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Abstract

The aim of this study is to demonstrate the usefulness of an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of transient
heat transfer. An ANFIS has been applied for the transient heat transfer in thermally and simultaneously developing circular duct flow,
subjected to a sinusoidally varying inlet temperature. The experiments covered Reynolds numbers in $Hh&852865 range and inlet
heat input in the @1 < B8 < 0.96 Hz frequency range. The accuracy of predictions and the adaptability of the ANFIS were examined, and
good predictions were achieved for the tempemt@amplitudes of the transient heat transfethermally and simultaneously developing
circular duct flow. The results show that the neuro-fuzzy can be used for modeling transient heat transfer in ducts. The results obtained
with the ANFIS are also compared to those of a multiple linear regression and a neural network with a multi-layered feed-forward back-
propagation algorithm.

0 2004 Elsevier SAS. All rights reserved.
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1. Introduction is very important; otherwise, the behavior of thermal sys-
tem’s response with-time can produce undesirable effects,
Transient convective heat transfer in tubes and ducts isleading to mechanical failure [11]. For these reasons, tran-
very important in connection with the control of modern sient convective heat transfer in ducts has been extensively
high performance heat transfer devices, and has been widelynvestigated by experimental, analytical and various numer-
studied [1-13]. Problems arising from start-ups, shut-downs, ical methods.
power surges and pump failures etc., during normal oper-  Although there are various experimental investigations on
ating conditions or time-varying inlet temperature and flow the transient heat transfer in ducts, the cost of experimental
rates can induce the transient behavior in thermal equipment.studies is very high. Numerical and different approximation
Thermal transients in ducts may also arise because of timemethods are alternative methods for further analysis because
dependent wall heat flux, as in the case of solar collector; their cost is cheaper than others [14]. Brown et al. [6],
wall temperature, or internal heat generation, as in the flow Kawamura [7], Travelho and Santos [8], Chen et al. [9],
channels of nuclear reactors. In these systems, ducts are gerkaka¢ and Yener [10] etc. are among the investigators who
erally the basic parts that may be exposed to many plannedanalyzed the transient heaamsfer in ducts numerically.
or unplanned transients, and an accurate prediction of the Artificial neural networks (ANNs) have become pop-
thermal response for such systems during unsteady periodsilar because of their high cqmatational rates, robust-
ness and ability to learn, and they have been used in
—_ _ ' diverse applications in power systems, manufacturing, op-
E?rfqr;ﬁzzr&?élgs:g:;;%eia@vxa;i%fsjﬁiiﬁasnog|u), timization, medicine, signal processing, control, robotics,

yilmazm@mailcity.com (M. Yilmaz), ocomakli@atauni.edu.tr and social/psychological sciences [15,16]. Fuzzy logic is a
(O. Comakli), ekmekci@sakarya.edu trEkmekci). problem-solving technique that derives its power from its
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Nomenclature
D diameter of orificeplate................... m o learning rate
D, duct diameter of fan redevelopment........ m B frequency of inlet periodic heat input...... Hz
D, diameter of test section ................... m 3§ error for output neuron
f logistic sigmoid activation function 0 dimensionless amplitud& 7 /ATy
h hidden layer 0 threshold between the input and hidden layers
] output £1 expansion factor
oL output layer n momentum factor
p design parameter ¢nsequent parameter) 0 density..............oiiiii kg3
q design parameter gnsequent parameter) AP orifice plate pressuredrop ................ Ra
r design parameter gnsequent parameter) AT centerline temperature amplitude........ ... °C
Re, Reynolds number in the fan redevelopment ATo  temperature amplitude at the center of the
section nlet. ..o °
Re Reynolds number in the test section " dynamicviscosity .................. Bm—2
t time 10 amplitude variation
T te_njperature ........................... °C Subscripts
w wiring strength of a rule ]
w weights i Input
X axial distance ..., m max  maximum
X input min minimum
Y target activation of the output layer 0 output
p value related to theadevelopment section
Greek symbols t value related to the test section
o dimensionless decay index amp amplitude

ability to draw conclusions and generate responses based omlynamic behavior of thermal systems with heat exchang-
vague, ambiguous, incomplete and imprecise information. ers. The artificial neural network technique was extended to
To simulate this process of human reasoning it applies thethe simulation of the time-dependent behavior of a heat ex-
mathematical theory of fuzzy tfirst defined by Professor changer and used to control the temperature of air passing
Lotfi Zadeh, in 1965 [17]. ANFIS (Adaptive Neuro-Fuzzy over it. A neural network approach was used to a nonlin-
Inference Systems), developed in the early 90s by Jang [18],ear identification and control of a heat exchanger by Bittati
incorporates the concept of fuzzy logic into the neural net- and Piroddi [22]. Scalabrin and Piazza [23] presented the
works to facilitate learning and adaptation. modeling of forced convection heat transfer for carbon diox-
ANNSs have been used by various investigators for mod- ide flowing inside a heated tube at supercritical conditions.
eling and predictions in the field of energy-engineering Four different correlation ardtectures were considered for
systems. Kalogirou [15] presents various applications of the neural network function ltarnatively based on dimen-
the ANNs in the field of energy-engineering systems in a sionless groups and on directly accessible physical quantities
thematic way: solar steam generator, solar water heatingas independent variables.
systems, heating, ventilating and air conditioning (HVAC) Artificial intelligence (Al) technigues can provide a fun-
systems, solar radiation and wind speed predictions, powerdamentally different approade transient heat transfer in
generation systems, forecasting and prediction, refrigerationducts than numerical solutiomethods. Artificial intelli-
etc. The number of investigations that evaluate convective gence in the form of expert systems and/or neural networks
heat transfer using artificial intelligence techniques is lim- can provide an affordable means of capturing the transient
ited. Thibault and Grandjean [19] presented a neural network heat transfer data and knowledge in a documented form
methodology for heat transfer data analysis. Three differ- available for all. On the other hand, review of literature on
ent examples were solved, using a three-layer feedforwardartificial intelligence systems in the area of transient heat
neural network. It was shown that neural networks could be transfer reveals that only a limited number of studies have
used to adequately correlatedt transfer data. Jambunathan been reported [14]. Ekmekgi et al. [14] presents the re-
et al. [20] evaluated convective heat transfer coefficients us- sults of an investigation on forced convection in a duct with
ing neural networks. The backpropogation algorithm was artificial neural network. A multilayered feed-forward back-
used to predict heat transfer coefficients from a given set propagation neural network algorithm was used to predict
of experimentally obtained conditions. Diaz et al. [21] pro- the temperature distribution in a duct with a periodically
posed a methodology for training and prediction of the varying inlet temperature in hydrodynamically developed
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and thermally developing unsteady laminar convection. To
the author’s knowledge, there is no study on the application
of neuro-fuzzy systems to transient heat transfer in a duct.
The purpose of this study is to apply an adaptive neuro-fuzzy
intelligence system to transient heat transfer. The experi-
mental results of transient forced convection with thermally
developing and simultaneously developing airflow within a
circular duct are used. A traditional data-mining and a neural
network technique are also used for comparison purposes,
and the results were compared to those of the ANFIS.

2. Neural networks

Algorithms for analytic computer codes in engineering
systems are usually complicated, involving the solution

Xi

Input
vector

Input
layer

Fig. 1. A three-layer feed-forward neural network used in this study.

of complex differential equations. These programs usually
require large computer power and need a considerable
amount of time to give accurate predictions. Instead of
complex rules and mathematiaautines, artificial neural-
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networks are able to learn the key information patterns

'

within a multi-dimensional information domain. In addition,
they are fault tolerant in the sense that they are able to

Present Inputs and Desired
Outputs

handle noisy and incomplete data, are able to deal with non-

1.7

linear problems, and once trained can perform predictions
and generalizations at high speed [15].

A neural network is a computational structure, consisting
of a number of highly interconnected processing elements

Propagate Feed Forward
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(Input and Hidden Layer)
W (t+1)=W,(t)+ad h+n AW,

0,t+1)=0,(1)+ad,
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(Input and Hidden Layer)

T
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(or nodes) that produces a dynamic response to external in-

1‘7

put or stimuli. Neural networks were originally developed
as approximations of the capabilities exhibited by biologi-

cal neural systems, and they are based on a connectionist % :f@W@X,, *ij

structure and mathematical functions that imitate the archi-
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Thresholds
(Hidden and Output Layer)
W+ =W, ()+adh, +n AW,

0,t+1)=0,01)+ad,

tecture and functions of the human brain. An artificial neural

l

network consists of interconnected artificial neurons, inter-
acting with one another in a concerted manner. Much of the

6, =0,(1-0)Y-0,)

Error Evaluation

interest in neural networks arises from their ability to learn
to recognize patterns in large data sets. This is accomplished
by presenting the neural network with a series of examples of
the conditions that the network is being trained to represent.
The neural network then leartise governing relationships
in the data set by adjusting the weights between its nodes. In
essence, a neural network can be viewed as a function that
maps input vectors to output vectors [16,24].

In this study, a multi-layered feed-forward back-propa-

gation algorithm is used. Input—output pairs are presented(2)

to the network, and weights are adjusted to minimize the
error between the network quuit and the actual value. Fig. 1
shows the back-propagation model, which has three layers of
neurons: an input layer, a hidden layer, and an output layer

[25]. The back-propagation training algorithm is an iterative €

gradient algorithm, designed to minimize the mean square
error between the predicted output and the desired output.
The flow chart of the back-propagation learning algorithm
is illustrated in Fig. 2. The algorithm of training a back-
propagation network is summarized as follows [14]:

1

Output

Fig. 2. Flow chart of the back-propagation learning algorithm.

(1) Initialize weights and threshold values: set all weights

and threshold to small random values.

Present input and desired output: present a continuous
valued input vectorXq, Xo,..
desired output01, Oo, ...

, 0,. Usually the training

sets are normalized to values betweefl.9 and 0.9

during processing.

) Compute the output of each node in the hidden layer:

n
hi = f(Z Wij Xi —91)
i=1

1)

whereh; is the vector of hidden-layer neurorisis the

input-layer neuronsW;; are the weights between the

., X,, and specify the



1078 A. Hasiloglu et al. / International Journal of Thermal Sciences 43 (2004) 1075-1090
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(5)

(6)

()

8
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input and hidden layers, arig is the threshold between  work on fuzzy sets, many theories in fuzzy logic were de-
the input and hidden layers. veloped, anduzzy modeling or fuzzy identificatibas been
Compute the output of each node in the output layer:  applied successfully to a number of applications [26—31].

m A fuzzy model is one that expresses a complex system
Oy = f(Z Wi X _9k> (2) in the form of fuzzy implications. In the fuzzy modeling

i1 of a process, a fuzzy model is built by using the physical
wherek represent the output layel;; are the weights properties of a sys_tem, observeq data, empirica_l knowledge,
connecting the hidden and output layefs, is the anq so on. A typical fu;;y nglc_ system consists of four
threshold connecting the hidden and output layers, and M&j0r components: fuzzification interface, fuzzy rule base,

f(x) is a logistic sigmoid activation function: fuzzy inference engine and defzification interface. The
fuzzification interfacqfuzzifie) converts numerical input
flx)= (3) data into suitable linguistic terms, which may be viewed
I+e™ as labels of the fuzzy sets. #izzy rule represents a fuzzy
Compute the output layer error between the target andrelation between two fuzzy sets. It takes form such as “If
the observed output: X is A thenY is B”. Each fuzzy set is characterized by
S5t = Or(1— O (Y — Op) (4) appropriate membership functions that map each element

_ to a membership value between 0 and 1.fuxzy rule
wheres; is the vector of errors for each output neuron pasecontains a set of fuzzy rules, where each rule may

andY is the target activation of output layer. have multiple inputs and multiple outpuBizzy inferencing
Compute the hidden layer error: can be realized by using a series of fuzzy operations. The
m defuzzification interfac@lefuzzifiey combines and converts
§j=h;j(1—hj) ZSkaj 5) linguistic conclusions (fuzzy membership functions) into
k=1 crisp numerical outputs.
wheres; is the vector of errors for each hidden layer ~ Depending on the types of inference operations ufen
neuron. then rules”,three types of fuzzy inference system have been

Adjust the weights and thresholds in the output layer:  widely employed in various applications: Mamdani fuzzy
models [27], Sugeno fuzzy models [28], and Tsukamoto
fuzzy models [29]. The differences between these three
+ (Wi (8) — Wi (¢ — 1)) (6) fuzzy inference systems lie in the consequents of their fuzzy
Ot + 1) = 0k (1) + ady (7) rules, and thus their aggregation and defuzzification pro-
cedures differ accordingly. &ngths, weakness, and other
related issues for these systems can be found in Ref. [30].

Wi (t +1) = Wy (t) + adih;

where« is the learning rate ang is the momentum
factor used to allow the previous weight change to
influence the weight change in this time period,

Adjust the weights and thresholds in the hidden layer:

Wji(t +1) = Wji(t) —i—aéjh,-

+1(Wji (D) = Wit = 1)) (8) While fuzzy logic performs @ inference mechanism
0jt+1)=0;) +ad; 9 under cognitive uncertainty, computational neural networks
Repeat steps (2) to (8) on the all pattern pairs until the offer exciting advantages, such as learning, adaptation, fault-

output layer error is within the specified tolerance for tolerance, parallelism and generalization. To enable a system
each pattern and for each neuron. to deal with cognitive uncertainties in a manner more like

humans, neural networks have been engaged with fuzzy
logic, creating a new terminology calle@uro-fuzzynethod

4. Adaptive neuro-fuzzy inference system (ANFIS)

3. Fuzzy logic [30]. Takagi and Hayashi made pioneer augmentation in

development of neuro-fuzzy technology in the last decade

System modeling based on conventional mathematical is[31]. Similarly, Jang developed ANFIS (Adaptive Neuro-

not well suited for dealing with ill-defined and uncertain sys- Fuzzy Inference Systems) in the early 90s [18]. As the name
tems. By contrast, a fuzzy inference system employing fuzzy suggests, ANFIS combineselfuzzy qualitative approach
if-then rulescan model the qualitative aspects of human Wwith the neural networks adaptive capabilities to achieve a
knowledge and reasoning processes without employing pre-desired performance. ANFIS are fuzzy models put in the
cise quantitative analyses. Fuzzy set theory and fuzzy logicframework of adaptive systems to facilitate learning and
were established in 1965 by Zadeh in order to deal with adaptation. Such system can be trained with no need for
the vagueness and ambiguity associated with human think-the expert knowledge usually required for the design of the
ing, reasoning, cognition, and perception [17]. After Zadeh's standard fuzzy logic.
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Fig. 3. ANFIS architecture used in this study.

Fig. 3 shows the ANFIS arcldtture. A first order Sugeno wherep;, ¢; andr; are design parameters (referred to as
fuzzy model is used as a means of modeling fuzzy rules into consequent parameters frthey deal with the then-part
desired outputs: of the fuzzy rule).

(5) Layer 5 has only one node, and it performs the function
of a simple summer. It computes the overall output as
wherep;, g; andr; are design parameters to be determined the summation of all incoming signals from layer 4:

if X1=A; andXn = B; thenf; = p; X1+¢;Xn +r; (10)

during the training stage. In the presentation, a circle j .
indicates a fixed node whereas a square indicates an adaptive  QL5; = Z’I’iﬁ - i wifi (15)
node. An adaptive node means that the parameters are i1 2 wi

changed during adaptation or training. This architecture

is a five-layered feed-forwdr neural structure, and the The results are then defuzzified using a weighted-average

functionality of the nodes in these layers is summarized as procedure.

follows [32,33]: The ANFIS architecture is not unique. Some layers can

be combined and still produce the same output. In this

(1) Allthe nodes in the first layer are adaptive. Each neuron ANFIS architecture, there are two adaptive layers (layers
in this layer corresponds to a linguistic label and the 1 and 4). Layer 1 has modifiable parameters related to
output equals the membership function of this linguistic the input membership function. The parameters in this
label: layer are called premise parameters. Layer 4 has also three

modifiable parameterg(, ¢; andr;) pertaining to the first

OL1i = pai(X1) (11) order polynomial. These parameters are called consequent
(2) The nodes in layer 2 are fixed (not adaptive). Each node parameters.
in this layer estimates the firing strength;) of a rule, The task of the training or learning algorithm for this
which is found from the multiplication of the incoming ~ architecture is to tune all thenodifiable parameters to
signal:. make the ANFIS output match the training data. A training
method such as back-propagation or a hybrid learning rule
OL2i = wi = pai (XD ppj (Xn) (12) which combines the gradient method and the least squares

(3) The nodes in layer 3 are also fixed nodes. Each node iniS €mployed to find the optimuralue for the parameters of
this layer estimates the ratia;) of theith rule’s firing the membership functions and a least sqgares procedure for
strength to sum of the firing strength of all rulgs;They th_e _Iln_ear parameters on the fuz_zy rules, in such a way as to
perform a normalization of the firing strength from the Minimize the error between the input and the output pairs.
previous layer. The output of each node in this layer is
given by: . .

W 5. Experimental setup and data reduction
OL3i =w; = —— (13) _ _ _

=1 Wi The experimental system is designed to study the decay

of sinusoidal thermal inlet conditions for transient forced

convection in thermally developing and simultaneously de-
veloping air flow in a circular duct, and a schematic diagram
is given in Fig. 4. The system consists mainly of a suction-

atype wind tunnel originally designed and built by Brown [6],

and experiments were made by Comakli [11] at Miami Uni-

OW4 =w; fi =w;i (piX1+qgiXn +r;) (14) versity, Florida, USA. The main components of the system

(4) All the nodes in layer 4 are adaptive nodes. The output
of each node in this layer is the product of the previously
found relative firing strength of thith rule (referred to
as defuzzifier or consequent parameters) and the rule (
first order polynomial for first order Sugeno model):
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Main Power

Vove Generlln Pomer Supply difference between maximum and minimum thermocouple
E_E Flecble Pipe outputs,Tax and Tiin, respectively and expressed as
Calming Seetlon Tmax— Tmin
Healer Thermocouples AT = f (16)

X L _ _ o o

Air Flow __ ” =P 1\ As the inlet temperature varied periodically in time, it
Enlrance Region Test Section was observed that each mode of the thermal oscillation
457 m 3v°5l'n"c”ned - decayed with distance along the duct. Consequently, the
Air Filter absolute value of the exponent in the expression governing

Tygon Tubing

temperature amplitude variation with distance, under steady-
sustained transient conditions is termed the decay index

ool ([ I . (o). The decay indices are obt&d as slopes of the curves
| IR I | for temperature amplitude versus dimensionless distance,
‘\oﬁﬁu PM}PVC Pipe using least squares regression in fitting the experimental
Yobve results with a 95% confidence limit and the cumulative
Fig. 4. Experimental system. standard deviation from linearity. In dimensionless form, the
amplitude variation along the centerline of the circular duct
is defined as

are: air filter, calming sectiorinlet section, electric heater, AT

. . e = pmX/Dy) (17)
test section, thermocouples, convergent section, orifice plate #amp ATo
anq afan. Laborator;_/ airis drawn into the apparatusthroughwhereX/Dt is the axial dimensionless distance along the
a filtered bell-mouth inlet geometry. It then passes through a

flow development section (4.57 m in length and 7.62 cm in g?fﬁﬁrﬁ(’ef[he temperature amplitudseasured at the center

diameter), an electric heatef uniform V-shaped configura- In this study, standard beaded-type chromel-constantan

;:O\Tv’ :ezt 3e|ct|or: (§£05 nt]i Iingt:;ﬁand sz Cr? il:: 3'?\Teter%' thermocouples are used for temperature measurements and
ow redevelopment section, orilice plate, main valve and comparison calibration method was adopted. The mea-

then leaves the flow circuit through the fan, operated in asUC- ¢\ Lement made with E-type thermocouples usually have a

tion mode. Once the apparatus is properly assembled, the ait -~ vimum uncertainty 0f-0.2°C within the range of 6C

flow is activated and adjusted for a predetermined flow rate to 100°C. The maximum value of thencertainty associated
or Reynolds number. This was observed as the pressure dm‘avith the mass flow rate and Reynolds number in turbulent

across the orifice plate. The function generator is switched g \vas evaluated as2 64%. The uncertainty associated

on, adjusted_, and stabilized at a specific periodic frequency,; .., decay index@) was obtained by utilizing least square

of inlet heat input. ) . . regression jointly with a 95% confidence interval with the
Under-steady sustained periodic conditions, the thermal g3 qard deviation from linearly. Based on this method, the

response of the fluid with-time, with respect to the inlet .ovimum uncertainty assated with the computed decay
perturbations areobtained from equally spaced beaded- i,gices is+5%.

type chromel-constantan thermocouples, installed along the 1o experiments covered Reynolds numbers in the
centerline and wall of the test section. To illustrate the 2528< Re< 4265 range and inlet heat input in thé®D<
dynamic response with-time, auiti-channel strip chart B < 0.96 Hz frequency range. Detailed knowledge on the

recorder is used in obtaining continuous traces of eacheyperimental setup, instrumentation, procedure and mea-
thermocouple output as a function of chart speed, pressuresyrements can be found in Ref. [11].

drop, probe location and inlet frequency. During this period,
the maximum and minimum outputs at individual probes are
recorded at each location. 6. Results and discussion
After each experimental run, raw data which consist
of millivolt readings from the thermocouples, pressure g.1. Experimental results
drop across the orifice plate anest section respectively,
in millimeters of liquid column, along with the voltage For qualitative analyses of the system’s dynamic thermal
and current supplied to the heater are recorded. Frompehavior, the temperature response with-time for predeter-
the measured parameters, mass flow rat¢, Reynolds mined locations along the centerline of the circular duct
numbers (Re,) and (Rg), temperature amplitudes with is presented as a function of inlet frequency and Reynolds
corresponding decay indices aneblter power are evaluated. number, for thermally developing and simultaneously devel-
Under steady-sustained transient conditions, the thermaloping turbulent flows. During the experiments, the tempera-
response of the fluid along the centerline of the circular duct ture at the entrance was specified as a sinusoidal oscillation
is observed to be periodic oscillations. In this study, ampli- with a specified frequency. The thermal response with time,
tudes of the thermal oscillations are defined as one half theand amplitude variation of the centerline thermal oscillations
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Table 1
Experimental temperature amplitude for circular duchi@ hydrodynamically developed and thermally developing flow
X/Dy AT [°C]
Re= 3068 Re= 3069 Re= 3068 Re= 3068 Re= 3069 Re= 3061
B=0.03 Hz B =0.06 Hz B=0.12 Hz B =024 Hz B =048 Hz B =0.96 Hz
1 5.508079 43425 2358107 0634339 0226191 0131823
3 5421759 427692 2307767 0632339 0215811 0126163
6 5292279 417855 2232257 0629339 0200241 0117673
9 5.162799 408018 2156747 0626339 0184671 0109183
12 5033319 398181 2081237 0623339 0169101 0100693
15 4903839 388344 2005727 0620339 0153531 0092203
18 4774359 378507 1930217 0617339 0137961 0083713
21 4644879 36867 1854707 0614339 0122391 0075223
24 4515399 358833 1779197 0611339 0106821 0066733
27 4385919 348996 1703687 0608339 0091251 0058243
30 4256439 339159 1628177 0605339 0075681 0049753
33 4126959 329322 1552667 0602339 0060111 0041263
36 3997479 319485 1477157 0599339 0044541 0032773
39 3867999 309648 1401647 0596339 0028971 0024283
Table 2
Experimental temperature amplitude for cianuduct in the hydrodynamically and thermallyveéoping (simultaneously developing) flow
X/Dy AT [°C]
Re= 3046 Re= 3045 Re= 3048 Re= 3049 Re= 3049 Re= 3050
B=0.03 Hz B=0.06 Hz B=0.12 Hz B =024 Hz B =048 Hz B=0.96 Hz
1 5541988 4350546 2364915 0636127 0252928 0138746
3 5499351 3798271 2234005 0628585 0212195 0130597
6 5.450015 3764223 1992028 0612258 0204115 0122416
9 5132332 3513217 1720977 0587339 0195835 0114213
12 5017992 3438298 1688491 0571166 0187709 0114244
15 4986904 3310014 165609 0489638 015506 0114188
18 3665484 3009877 1534709 0473343 0130586 0106097
21 3502781 251461 1315222 0408358 012245 0097994
24 3267833 2393165 1274288 038383 012251 0089866
27 3072348 2034618 0997136 034321 0114345 0065333
30 2755378 1887952 0923974 0326894 010629 0065386
33 2731644 1757864 0916063 0310739 0098126 0057223
36 2633205 1782418 089963 0261711 0073623 0057223
39 2520044 1668782 0818277 0240939 0063627 0040916

are expressed as function of the dimensionless distance at gible in both thermally and simultaneously developing
various values of Reynolds number and inlet frequency. Am- flows.
plitudes of the thermal oscillations are defined as one half (4 The thermal response along the centerline changed
the difference between maximum and minimum thermocou-
ple outputs (Eq. (16)).

Tables 1 and 2 show the experimental temperature ampli-
tudes for the thermally developing and simultaneously de- ®)

periodically with approximately the same frequency as
that imposed at the inlet.
For given Reynolds number, the temperature amplitude

veloping flows for the range of inlet frequencies considered, is observed_ to decrease by 82 an_d 88% for fully dgvel—
respectively. The experimental results can be summarizedas ~ oped and simultaneously developing flows, respectively
follows [11]: over an inlet frequency range of 0.03—0.96 Hz.

_ _ (6) At a given value of the inlet frequency, the dimen-
(1) The centerline temperature amplitudes at the upstream  gjonless temperature amplitude at a point downstream
end were much greater than those at the downstream depends on the Reynolds number and the dominant

end.
(2) The amplitude of the oscillations is observed to decay mode of heat tr_ansfer.
) The effects of inlet frequency on the thermal response

with small, but increasing phase lag with increasing e ]
distance from the inlet. of the fluid within the temperature field are observed to

(3) For high inlet frequencies, the amplitude of the thermal be more dominant in simultaneously developing flows
oscillation along the centerline is observed to be negli- when compared to fully developed flows.
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The results of the experimental investigation can be found the training data set is to construct a network for achieving a

in detail in Ref. [11]. desired mapping that is regulated by the data set consisting
of desired input—output pairs of a target system. With a better
6.2. ANFIS results set of training patterns it is possible to predict the output

o o with high accuracy. In order to verify the generation of the
To approach adopted in this investigation was to model model, all of the data were divided into two categories:
the temperature amplitudedT’, as a function of three  naif of them for the training set, the other half for the

variables namely, test set. The ANFIS was set for training, and the tuning
. . . ) algorithm modified the ANFIS parameters to match the
(i) X/Dy, the dimensionless distance, training data. After having been verified by the test data set,

(i) Re Reynolds number, and

. the temperature amplitudes were estimated using the above
(iii) B, the heating frequency.

neuro-fuzzy algorithm procedure.

. . The speed of learning is governed by the learning rate.
ANFIS was used to train and validate the neural network and Learning rate affects the convergence speed and stability

to generate the fuzzy rules. Fig. 5 shows atyplcalthree—lnputOf the weights during learning. If the leaming rate is

network used in this application. Based on the expenmental.ncreased t00 much, learning becomes unstable; the net

11], the dimensionl istance, Reynolds number an . . .
data[L1], the dimensionless distance, Reynolds number a doscnlatesbackandforth across the error minimum. Learning

the heating frequency were chosen as the input, and the ¢ lected as 0.01 for th I d simult |
temperature amplitude was used as the output. rate was selected as 9.u.. Tor tnermally and simufraneously
developing flow. The training error is the difference between

The training and test performances of the ANFIS are -
presented in Table 3. A three-input, first order, Sugeno fuzzy € training data output value and the output of the fuzzy

inference system with 16 rules was used. The number of Nference system corresponding to the same training data
rules was selected as 16 after trying various numbers of MPUt value. The training error was found to be equal
rules, i.e., 4, 6,9, 16 and 20. Sixteen membership functionst® 0.0035 and 0.0088 for thermally and simultaneously
were chosen for each input, and the membership function developing flow, respectively. Test errors, which assess the
parameters were tuned using a hybnd algorithm (mixed variance between measured and predicted values were of the
least squares and back-propagation). All of the membershipsame order in magnitude for thermally and simultaneously
functions of the input variables were of the Gaussian type, developing flow, as seen in Table 3. Epochs were setted as
and the premise parameter sub-spaces were determined b§0 and 60 for thermally and simultaneously developing flow,
usingk-means clustering of the training data set. The aim of respectively.
The predicted temperature amplitudes obtained with the

input  inputmé e outpumf weighted sum output ANFIS in addition to the experimental temperature ampli-
tudes for different heating frequencies in the hydrodynam-
ically developed and thermally developing flow are shown
in Table 4. This table includes also the error differefse
and error deviation4%). In the present work, th& and
A% are evaluated as

R
e ; : (AT); = Tiexp_ Tipred (18)
f,ir YR WS W
;ﬁs:%tgﬁ%&% i exp_ npred
e (AT%); = ————1— x 100 (19)
At T i
: e e e

where ‘exp’ and ‘pred’ stand for experimental and calculated
values, respectively. A plot ohe experimental temperature

amplitude against dimensionless distance is given in Fig. 6,
Fig. 5. A three-input, first order, eno fuzzy inference system with 16 ~ Which includes also the predicted values obtained with the

rules used in this study. ANFIS. A maximum error deviation confined to less than
Table 3

Training and test performances of ANFIS

Flow type Train algorithm Learning rate Traing error Test error Epochs Rules for each input
Thermally developing Hybrid 0.01 0.0035014 0.03290 50 16

Simultaneously developing Hybrid 0.01 0.00875 0.02680 60 16




Table 4

Experimental and predicted temperature amplitudes obtained withNR¢S, error differences, error detians for circular duct in the hydrodynacally developed and thermally developing flow

X /Dy Re=3068,8 = 0.03 Re=3069,8 = 0.06 Re=3068,8 =0.12
Exp. Pre. AT AT% Exp. Pre. AT AT% Exp. Pre. AT AT%
Tamp[°C] Tamp[°C] Tamp[°C] Tamp[°C] Tamp[°C] Tamp[°C]
1 5508079 592 0411921 7478487509 8425 459 02475 5699481865 358107 24 0.041893 1776552124
3 5421759 533 0408241 7529678099 27692 45 0.22308 5215903033 307767 234 0032233 1396718126
6 5292279 565 0357721 6759299727 47855 435 017145 4103097965 232257 26 0027743 1242822847
9 5162799 42 0257201 498181316 48018 12 0.11982 2936635148 256747 219 0033253 1541812739
12 5033319 517 0136681 2715524289 38181 405 006819 1712537765 081237 21 0.018763 0901531157
15 4903839 495 0046161 0941323726 B8344 391 002656 0683929712 D05727 201 0004273 021303996
18 4774359 479 0015641 0327604187 F8507 379 000493 0130248582 1030217 194 0009783 0506834206
21 4644879 465 0005121 011025045 3867 369 00033 0089510945 B54707 186 0005293 0285382004
24 4515399 451 0005399 0119568614 $8833 359 000167 0046539755 779197 178 0000803 004513272
27 4385919 438 0005919 0134954613 318996 349 4E-05 0001146145 703687 17 0.003687 0216412991
30 4256439 426 0003561 0083661483 39159 339 000159 0046880667 ¥28177 163 0001823 0111965714
33 4126959 413 0003041 0073686218 29322 329 000322 0097776644 552667 155 0002667 0171768963
36 3997479 399 0007479 0187092915 39485 319 000485 0151806814 Wnr7157 148 0002843 0192464308
39 3867999 37 0002001 0051732175 39648 31 0.00352 0113677466 uoiear 14 0.001647 0117504621
X /Dy Re= 3068, =0.24 Re= 3069, =0.48 Re= 3061, =0.96
Exp. Pre. AT AT% Exp. Pre. AT AT% Exp. Pre. AT AT%
Tamp[°Cl] Tamp[°C] Tamp[°Cl] Tamp[°C] Tamp[°C] Tamp[°C]
1 0.634339 0649 Q014661 2311224755 (226191 0233 Q006809 3010287766 (131823 0132 Q000177 0134270954
3 0.632339 0635 0002661 042081858 @®15811 0221 0005189 2404418681 (126163 0126 0000163 0129197942
6 0.629339 0637 Q007661 1217308954 (200241 0203 Q002759 1377839703 17673 0118 Q000327 0277888726
9 0.626339 0635 0008661 1382797495 184671 0186 0001329 0719658203 (109183 0109 0000183 016760851
12 0623339 0623 Q000339 0054384532 (169101 oL7 0000899 053163494 (100693 0101 Q000307 0304887132
15 0620339 0619 0001339 0215849721 153531 0154 Q000469 0305475767 92203 00924 0000197 0213658992
18 0617339 0622 Q004661 0755014668 (137961 0138 3.9E-05 28268859 M83713 00838 8.7E-05 103926511
21 0614339 0612 0002339 0380734415 122391 0121 0001391 1136521476 M75223 00753 7.7E-05 102362309
24 0611339 0607 Q004339 0709753508 (106821 0106 Q000821 0768575467 M66733 00666 0000133 0199301695
27 0608339 061 0001661 0273038553 091251 0092 Q000749 0820812923 58243 00583 5.7E-05 097865838
30 0605339 0605 Q000339 0056001678 M75681 00761 0000419 0553639619 M49753 00497 5.3E-05 10652624
33 0602339 0598 0004339 0720358469 M60111 00591 0001011 1681888506 M41263 00413 3.7E-05 08966871
36 0599339 0595 Q004339 0723964234 M44541 00436 0000941 2112660246 ®M32773 00328 2.7E-05 08238489
39 0596339 0593 Q003339 0559916423 28971 00295 0000529 1825963895 ®24283 00243 1.7E-05 ®70007824
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Table 5
Predicted temperature amplitudes obtained with the ANfeiSdifferent heating frequecies for circular duct in the
hydrodynamically developed and thermally developing flow

X/D;  Re=3068 Re= 3069 Re= 3068 Re= 3068 Re= 3069
B =0.045 Hz p =0.090 Hz p=0.18 Hz B =0.36 Hz B =072 Hz
1 471 321 0925 Q99 104
3 463 314 091 0987 109
6 451 304 0891 Q978 116
9 4.4 295 0892 Q973 121
12 429 287 0871 0968 123
15 421 28 0.86 0966 117
18 414 275 0852 0963 101
21 406 268 0842 0851 Q761
24 395 26 0.856 Q713 Q557
27 383 254 0862 0634 0492
30 371 249 0817 0644 0532
33 358 243 0766 Q723 0612
36 345 234 0705 0825 0689
39 334 227 0666 0913 Q746
6
—&— B=003-Pre. —0—B=003-Exp. ——i—B=0.06-Pre
vy -BfOUS—Exp. +EfU1Z-P|E. =+ - -B=0.12-Exp.
5 HEEE TR T |
5 |
4 4
Tusg >

N T T e P PIT TORRE N SO S TTILE O | :
0 10 20 30 4 20 " 06 08
® 10 oz o
Fig. 6. Experimental and predictédmperature amplitudes obtained with #/D B (Hz)
HZ?NANFIS in the hydrodynamically developed and thermally developing Fig. 7. Overall input—output surfader hydrodynamically developed and

thermally developing flow.

7.52% was obtained, while the average absolute deviation
(AAD%) was 1.076. AAD% are evaluated as

NPT (i) the amplitude of the oscillations decays with small, but
AADY — Z |AT %); (20) ?ncreasing phase lag with increasing distance from the
NPT — inlet, and

where NPT is the number of points. In general, the matching (iii) for high. inlet frequencies, the.amplitude Pf_the Fhermal
of the experimental and predicted values in each case oscillation along the centerline is ne_gl|g|ble in both
was acceptable. Therefore the neuro-fuzzy could be used  thermally and simultaneously developing flows.

to predict the temperature amplitude distribution with an _
acceptable level of accuracy. The ANFIS was also employed to predict temperature

Using the same neuro-fuzzy algorithm procedure, tem- gmplitudes for.simultaneously deyelopingflows for differgnt
perature amplitude for some different heating frequencies inlet frequencies. Table 6 and Fig. 8 show the comparison
are predicted and presented in Table 5. Overall input—outputPetween the ANFIS prediction and the experimental mea-
surface for the hydrodynamically developed and thermally surements. An examination of Table 6 shows that the max-
developing flow obtained with the ANFIS is given in Fig. 7. imum error deviation(A) and average absolute deviation
In addition to providing to predict the experimental tempera- (A%) are confined to less than 14.37 and 3.7%, respectively.
ture amplitudes, the overall input—output surface proves also These results show that good predictions are achieved for
that the temperature amplitudes of the simultaneously develop-

ing flows. Using the same neuro-fuzzy algorithm procedure,
(i) the centerline temperature amplitudes at the upstreamtemperature amplitudes for some different heating frequen-
end are much greater than those at the downstream endcies are predicted and presented in Table 7. Fig. 9 presents



Table 6

Experimental and predicted temperature amplitudes obtained withNR¢S, error differences, error devians for circular duct in the hydrodyn@cally and thermally developg (simultaneously developing)

flow
X/D;  Re—=3046,8 — 0.03 Re= 30458 = 0.06 Re= 3048, = 0.12
Exp. Pre. AT AT% Exp. Pre. AT AT% Exp. Pre. AT AT%
Tamp[°C] Tamp[(°C] Tamp[°C] Tamp[°C] Tamp[°C] Tamp[°C]
1 5541988 557 0028012 0605450391 850546 474 0389454 8951841907 2864915 241 0.045085 1906411013
3 5499351 53] 0.000649 0011801393 398271 365 0148271 3903644579 234005 226 0.025995 1163605274
6 5450015 539 0060015 110118963 3764223 35 0.264223 7019323775 1092028 205 0057972 2910200057
9 5132332 527 0137668 2682367392 3513217 35 0163217 4645798993 1720977 187 0.149023 8659209275
12 5017992 509 0.072008 1434996309 3138298 316 0278298 8094062818 688491 172 0.031509 1866104113
15 4986904 472 0.266904 5352098216 310014 377 0459986 1389679923 165609 161 0.04609 2783061307
18 3665484 401 0344516 9398922489 009877 304 0030123 1000805016 534709 15 0.034709 2261601385
21 3502781 39 0112781 321975596 51461 243 008461 336473648 1315222 138 0064778 4925252163
24 3267833 314 0127833 3911858409 893165 216 0233165 9742955459 074288 119 0.084288 6614517283
27 3072348 03 0042348 1378359483 2034618 202 0014618 0718464105 ®97136 103 0032864 3295839284
30 2755378 29 0.144622 5248717236 B87952 189 0002048 0108477334 ®23974 093 0.006026 0652182854
33 2731644 276 0.028356 1038056204 1757864 178 0022136 1259255551 16063 088 0.036063 3936737975
36 2633205 261 0023205 0881245478 1782418 171 0072418 4062907803 (B9963 086 0.03963 4405144337
39 2520044 249 0.030044 1192201406 668782 171 0041218 2469945146 (818277 084 0021723 26547245
X/D;  Re=3049,8 = 0.24 Re= 3049,8 = 0.48 Re= 3050,4 = 0.96
Exp. Pre. AT AT% Exp. Pre. AT AT% Exp. Pre. AT AT%
Tamp[°C] Tamp[°C] Tamp[°C] Tamp[°C] Tamp[°C] Tamp[°C]
1 0.636127 064 0.003873 0608840687 (252928 0226 Q026928 106465081 0138746 0141 Q002254 1624551338
3 0.628585 0632 Q003415 0643283725 (212195 0213 Q000805 0379368034 (130597 013 0.000597 0457131481
6 0.612258 0618 Q005742 093783993 @®04115 0195 Q009115 4465619871 (122416 0119 Q003416 2790484904
9 0.587339 0597 Q009661 1644876298 195835 0181 Q014835 7575254679 14213 0115 Q000787 0689063417
12 0571166 056 0011166 1954948299 87709 0172 Q015709 8368804905 14244 0116 Q001756 1537061027
15 0489638 0508 Q018362 3750117434 5506 0155 6E-05 0038694699 (114188 0115 Q000812 0711107997
18 0473343 o457 Q016343 3452675966 (130586 013 0000586 044874642 QL06097 0107 Q000903 0851107948
21 0408358 m15 Q006642 162651399 QL2245 0118 Q00445 3634136382 97994 0095 Q002994 3055289099
24 038383 0381 Q00283 0737305578 2251 0116 Q00651 531385193 89866 0084 Q005866 6527496495
27 034321 0349 Q00579 1687013782 114345 0113 Q001345 1176264813 ®M65333 0074 Q008667 1326588401
30 0326894 0318 Q008894 2720759635 10629 0106 Q00029 0272838461 M65386 0064 Q001386 2119719818
33 0310739 0288 Q022739 7317716798 ®M98126 0093 Q005126 5223895807 57223 0056 Q001223 2137252503
36 0261711 0261 Q000711 0271673716 ®M73623 0076 Q002377 3228610624 57223 0049 Q008223 1437009594
39 0240939 0236 Q004939 2049896447 M63627 0055 Q008627 1365870935 ®M40916 0046 Q005084 1242545703
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Table 7
Predicted temperature amplitudes obtained with the ANfeiSdifferent heating frequecies for circular duct in the
hydrodynamically and thermally developing flow

X/D;  Re=3046 Re= 3045 Re= 3048 Re= 3049 Re= 3049
B =0.045 Hz p =0.090 Hz p=0.18 Hz B =0.36 Hz B =072 Hz
1 523 235 153 135 0465
3 515 202 146 133 0437
6 5.04 154 136 129 0393
9 491 119 127 125 0342
12 473 115 119 122 0268
15 435 164 114 122 0124
18 36 145 114 124 0182
21 295 138 124 124 0545
24 27 158 147 118 0627
27 259 123 18 103 0562
30 248 102 211 0812 0514
33 235 0891 234 0595 Q502
36 222 0829 248 0433 Q51
39 211 0833 257 0332 0531

——B=0.03-Pre. --< --B=0.03-Exp. —&—B=0.06-Pre. -- & --B=0. 3
—e—B=0.12-Pre. -- O --B=0.12-Exp. —#—B=024-Pre. -- O - -B=0.24-Exp.
—X—B=048-Pre. - - X - -B=0.48-Exp. —#—B=0.96-Pre. --+ --B=0 .

/
-
g

r—y e e, 04 g2 L
o 5 10 15 20 25 S S « ||3 I:sz

Fig. 9. Overall input—output surfader hydrodynamically and thermally

Fig. 8. Experimental and predictedmperature amplitudes obtained with developing flow

the ANFIS in the hydrodynamically and thermally developing flow

overall input—output surface for simultaneously developing momentum factor. In the present work, the comparison of the
flow. three approaches was made on the basis of the accuracy, the
complexity of tuning/learning algorithm, standard deviation,
6.3. Comparison of the ANFIS results with other techniques train and test performance.
Multiple linear regression analysis is usually used to sum-
In order to check whether the predictions of transient marize data as well as study relations between variables [34].
heat transfer can be done with traditional non-Al techniques Stepwise regression is basically a combination of backward
or pure neural network without using hybrid neuro-fuzzy and forward procedures and is probably the most commonly
approach, a multiple linear regression analysis and a neuralused method [35,36]. In this method, the first variable is se-
network analysis were used. Presenting these alternativdected in the same manner as in the forward selection. If the
approaches and comparing the results could shed more lightariables fail to meet the entry requirements, the procedure
on the difficulty of the problem and the power of non- terminates with no independent variables entering into the
traditional methods in solving it. equation. If it passes the criterion, the second variable based
It is well known that the performance of an artificial on the highest partial correlation is selected. If it passes the
intelligence technique depends on various parameters suctentry criterion, it also enters the equation. After the first
as the speed of learning, thg@ezed of convergence, the variable is entered, stepwise selection differs from forward
complexity of tuning/learmig algorithm, the accuracy, the selection: the first variable is examined to see whether it
configuration of networks etc. For instance, the speed of should be removed according to the removal criterion as in
learning can be improved by using appropriate number backward elimination. In the next step, variables not in the
of hidden nodes, the global learning coefficient, and the equation are examined for removal. Variables are removed



Table 8

Comparison of the predicted temperatures obtained with the ANFIS,Im@iveork and multiregression methods for circular duct in the hydrodyraiyideveloped and thermally developing flow

X/ Dy Re=3068,8 = 0.03 Hz Re=3069,8 = 0.06 Hz Re=3068,8 = 0.12 Hz
Exp. Pred.Tamp[°C] Exp. Pred.Tamp[°C] Exp. Pred.Tamp[°C]
Tamp[°C] ANFIS  Neural Multi Tamp[°C] ANFIS  Neural Multi Tamp[°C] ANFIS  Neural Multi
network regression network regression network regression
1 5.508079 592 5455768 441074 43425 459 4379260 368648 2358107 24 2385521 371396
3 5421759 533 5373071 437074 427692 45 4311129 364648 2307767 234 2346013 278492
6 5.292279 565 5248456 431074 417855 435 4208591 358648 2232257 26 2285878 437074
9 5162799 Y2 5123118 425074 408018 42 4.105595 033484 2156747 219 2224623 367396
12 5033319 517 4996999 419074 398181 405 4002076 346648 2081237 21 2162156 274492
15 4903839 495 4870031 413074 388344 391 3897956 021484 2005727 201 2098374 431074
18 4774359 479 4742133 407074 378507 379 3793146 340648 1930217 194 2033165 361396
21 4644879 465 4613208 401074 36867 369 3687545 015484 1854707 186 1966405 268492
24 4515399 451 4483149 395074 358833 359 3581038 334648 1779197 178 1897960 425074
27 4385919 438 4351835 389074 348996 349 3473500 009484 1703687 17 1827684 355396
30 4256439 426 4219131 383074 339159 339 3364794 328648 1628177 163 1755422 262492
33 4126959 43 4.084892 377074 329322 329 3254769 003484 1552667 155 1681008 419074
36 3997479 399 3948961 371074 319485 319 3143265 322648 1477157 148 1604266 349396
39 3867999 387 3811172 365074 309648 31 3030111 —0.02516 1401647 14 1525011 256492
X/ Dy Re=3068,8 =0.24 Hz Re=3069,8 = 0.48 Hz Re=3061,8 = 0.96 Hz
Exp. Pred.Tamp[°C] Exp. Pred.Tamp[°C] Exp. Pred.Tamp[°C]
Tamp[°C] ANFIS  Neural Multi Tamp[°C] ANFIS  Neural Multi Tamp[°C] ANFIS  Neural Multi
network regression network regression network regression
1 0.634339 0649 0623374 278492 0226191 0233 Q177264 043484 0131823 0132 0102602 065468
3 0.632339 0635 0617108 437074 0215811 0221 Q185369 364648 0126163 0126 Q108588 061468
6 0.629339 0637 0606065 367396 0200241 0203 Q195772 039484 0117673 0118 Q114746 055468
9 0.626339 0635 0592986 274492 0184671 0186 Q204039 358648 0109183 0109 Q117429 049468
12 0623339 0623 Q577797 431074 0169101 017 0210125 033484 0100693 0101 0116531 065468
15 0620339 0619 0560411 361396 0153531 0154 Q213979 352648 0092203 00924 0111932 049468
18 0617339 0622 0540732 268492 0137961 0138 0215538 7484 0083713 00838 0103504 043468
21 0614339 0612 0518654 425074 0122391 0121 Q214731 346648 0075223 00753 0091107 037468
24 0611339 0607 0494062 355396 0106821 0106 0211475 021484 0066733 00666 0074595 031468
27 0608339 061 0466827 262492 0091251 0092 Q205680 340648 0058243 00583 0053809 025468
30 0605339 0605 0436813 419074 0075681 00761 0197243 015484 0049753 00497 0028588 019468
33 0602339 0598 Q403873 349396 0060111 00591 0186051 334648 0041263 00413 —0.001238 013468
36 0599339 0595 0367851 256492 0044541 00436 0171982 009484 0032773 00328  —0.035841 007468
39 0596339 0593 0328581 413074 0028971 00295 0154903 328648 0024283 00243 —0.075395 001468
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Table 9
Comparison of the predicted temperatures obtained with the ANFIS,Immiveork and multiregression methods for circular duct in the hydrodyradiyiand thermally developin{simultaneously developing)
flow
X /Dy Re=3046,8 = 0.03 Hz Re=3045,8 =0.06 Hz Re=3048,8=0.12 Hz
Exp. Pred.Tamp[°C] Exp. Pred.Tamp[°C] Exp. Pred.Tamp[°C]
Tamp[°C] ANFIS  Neural Multi Tamp[°C] ANFIS  Neural Multi Tamp[°C] ANFIS  Neural Multi
network regression network regression network regression
1 5541988 557 5568909 336188 4350546 474 4455783 264794 2364915 241 2199947 118976
3 5499351 55 5.354130 328188 3798271 365 4257783 256794 2234005 26 2099898 110976
6 5450015 539 5040906 316188 3764223 35 3970104 244794 1992028 205 1956977 098976
9 5.132332 527 4738645 304188 3513217 335 3693707 232794 1720977 187 1822325 086976
12 5017992 509 4447542 292188 3438298 316 3428646 20794 1688491 172 1695589 074976
15 4986904 472 4167722 280188 3310014 377 3174912 208794 165609 161 1576417 062976
18 3665484 401 3899244 268188 3009877 304 2932443 196794 1534709 15 1464457 050976
21 3502781 339 3642108 256188 251461 243 2701125 184794 1315222 138 1359365 038976
24 3267833 314 3396258 244188 2393165 216 2480800 172794 1274288 119 1260801 026976
27 3072348 303 3161586 232188 2034618 202 2271270 160794 0997136 103 1168435 014976
30 2755378 2 2937939 220188 1887952 189 2072303 148794 0923974 093 1081942 002976
33 2731644 276 2725126 208188 1757864 178 1883635 136794 0916063 088 1001010 —0.09024
36 2633205 261 2522917 196188 1782418 171 1704980 124794 089963 086 0925336 —0.21024
39 2520044 249 2331053 184188 1668782 171 1536030 112794 0818277 084 0854627 —0.33024
X /Dy Re=3049,8 =0.24 Hz Re=3049,8 =0.48 Hz Re=3050,8 =0.96 Hz
Exp. Pred.Tamp[°C] Exp. Pred.Tamp[°C] Exp. Pred.Tamp[°C]
Tamp[°C] ANFIS  Neural Multi Tamp[°C] ANFIS  Neural Multi Tamp[°C] ANFIS  Neural Multi
network regression network regression network regression
1 0.636127 064 0652114 044552 0252928 0226 Q096890 039704 0138746 0141 Q215105 —0.41992
3 0.628585 0632 0622639 036552 0212195 0213 0095828 031704 0130597 013 0215757 —0.49992
6 0.612258 0618 0581013 024552 0204115 0195 Q094456 019704 0122416 0119 Q216716 —0.61992
9 0.587339 0697 0542320 012552 0195835 0181 0093328 007704 0114213 0115 0217654 —0.73992
12 0571166 056 0506374 000552 0187709 0172 Q092424 —0.04296 0114244 0116 Q218571 —0.85992
15 0489638 0508 Q472999 —0.11448 015506 0155 Q091726 —0.16296 0114188 0115 Q219469 —0.97992
18 0473343 57 Q442030 —0.23448 0130586 013 0091215 —0.28296 0106097 0107 0220346 —1.09992
21 0408358 415 Q413313 —0.35448 012245 0118 Q090877 —0.40296 0097994 0095 Q221204 —1.21992
24 038383 0381 0386698 —0.47448 012251 0116 Q090697 —0.52296 0089866 0084 0222043 —1.33992
27 034321 0349 Q362049 —0.59448 0114345 0113 Q090659 —0.64296 0065333 0074 Q222864 —1.45992
30 0326894 0318 0339234 —0.71448 010629 0106 Q090752 —0.76296 0065386 0064 0223666 —1.57992
33 0310739 0288 Q318133 —0.83448 0098126 0093 Q090963 —0.88296 0057223 0056 Q224450 —1.69992
36 0261711 61 0298628 —0.95448 0073623 0076 0091282 —1.00296 0057223 0049 0225217 —1.81992
39 0240939 0236 Q280614 —1.07448 0063627 0055 0091698 —1.12296 0040916 0046 Q225966 —1.93992
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Table 10
Comparison of the models
ANFIS Neural network Multiple regression

Learning algorithm Hybrid Back+ppagation Stepwise regression
Standard deviation Thenally developing (®917003 1007945 1756972

Simultaneously developing .a09565 1010707 1727440
Training error Thermally developing .@035014 0134140 -

Simultaneously developing .@875 0209694 -
Test error Thermally developing .@B290 0422487 -

Simultaneously developing .@r680 0238661 -

until none of the remaining variables meet the removal cri- 7. Conclusions
terion. Variable selection terminates when no more variables

meet entry and removal criteria [37]. The results obtained  Thjs study was conducted to demonstrate the usefulness
with the multiple linear regression analysis are presented inof the artificial intelligence techniques for the prediction
Tables 8 and 9 for the thermally developing and simulta- of transient heat transfer. Aadaptive neuro-fuzzy infer-
neously developing flows, respectively. Standard deviationsence system was applied for the transient heat transfer in
of the thermally developing and simultaneously developing thermally and simultaneously developing circular duct flow,
flow were calculated as 1.756972 and 1.727440, respec-subjected to a sinusoidally varying inlet temperature. The
tively. Standard deviations are obtained using the following accuracy of predictions and the adaptability of the AN-
equation: FIS have been examined. The ANFIS indicated that it was
able to learn the training data set and accurately predict
. . the output of unseen test data. The results obtained with
s Z\/(Z(Expenmental— Est|mated2> 21) the ANFIS are also compared to those of a multiple lin-

n—1 ear regression and a neural network with a multi-layered
feed-forward back-propagation algorithm. The comparison
showed that the ANFIS performed better than the multi-
ple linear regressions and the neural network. Although the
present study has produced promising preliminary results, to
provide an affordable means of capturing transient convec-
tive heat transfer data and knowledge in a documented form
available for all, this study should be progressed.

A multi-layered feed-forward back-propagation algo-
rithm was used in the neural network analysis of the present
study. The back-propagation model has three layers of neu-
rons: an input layer, a hidden layer, and an output layer,
as shown in Fig. 1. The flow chart of the back-propagation
learning algorithm is illustrated in Fig. 2. The algorithm of
the training a back-propagation network is explained in de-
tail in the section of introduction. The results obtained with
the multi-layered feed-forward back-propagation algorithm
are presented in Tables 8 and 9 for the thermally developing [1] S. Kakag, Transient forced convection heat transfer in a channel
and simultaneously developing flows, respectively. Standard *~ 7 "9 émﬁueb’ema e 1V 19'68 10175 ! :
deviations were determined to be equal to 1.007945 and [2] R.M. Cotta, M.N. Ozigik,gLamina(r forc)ed convection inside ducts
1.010707 for the thermally developing and simultaneously with periodic variation of inlet temperature, Internat. J. Heat Mass
developing flows, respectively. Transfer 10 (1986) 1495-1501.

The comparison of the ANFIS, multiple linear regression, [3] W. Li, S. Kakag, Unsteady thermal entrance heat transfer in laminar

. . . flow with a periodic variation of inlet temperature, Internat. J. Heat
and neural network is presented in Table 10. The comparison =&t a4 (1991) 2581-2592.

shows that: [4] S. Kakag, W. Li, R.M. Cotta, Unsteady laminar forced convection in
ducts with periodic variation of inlet temperature, J. Heat Transfer 112

() The maximum standard deviations were obtained with (1990) 913-920.
the multiple linear regression, [5] D.M. Brown, Experimental investigation of transient forced convec-

.. L. . . tion in a circular duct for timewise variation of inlet temperature,
(i) the standard deviation of the neural network is higher Master Thesis, Dept. of Mech. Eng., University of Miami, 1992.
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