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Abstract

The aim of this study is to demonstrate the usefulness of an adaptive neuro-fuzzy inference system (ANFIS) for the prediction o
heat transfer. An ANFIS has been applied for the transient heat transfer in thermally and simultaneously developing circular d
subjected to a sinusoidally varying inlet temperature. The experiments covered Reynolds numbers in the 2528� Re� 4265 range and inle
heat input in the 0.01� β � 0.96 Hz frequency range. The accuracy of predictions and the adaptability of the ANFIS were examin
good predictions were achieved for the temperature amplitudes of the transient heat transferin thermally and simultaneously developin
circular duct flow. The results show that the neuro-fuzzy can be used for modeling transient heat transfer in ducts. The results
with the ANFIS are also compared to those of a multiple linear regression and a neural network with a multi-layered feed-forwa
propagation algorithm.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Transient convective heat transfer in tubes and duc
very important in connection with the control of mode
high performance heat transfer devices, and has been w
studied [1–13]. Problems arising from start-ups, shut-dow
power surges and pump failures etc., during normal o
ating conditions or time-varying inlet temperature and fl
rates can induce the transient behavior in thermal equipm
Thermal transients in ducts may also arise because of
dependent wall heat flux, as in the case of solar collec
wall temperature, or internal heat generation, as in the
channels of nuclear reactors. In these systems, ducts are
erally the basic parts that may be exposed to many plan
or unplanned transients, and an accurate prediction o
thermal response for such systems during unsteady pe
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is very important; otherwise, the behavior of thermal s
tem’s response with-time can produce undesirable effe
leading to mechanical failure [11]. For these reasons, t
sient convective heat transfer in ducts has been extens
investigated by experimental, analytical and various num
ical methods.

Although there are various experimental investigations
the transient heat transfer in ducts, the cost of experime
studies is very high. Numerical and different approximat
methods are alternative methods for further analysis bec
their cost is cheaper than others [14]. Brown et al.
Kawamura [7], Travelho and Santos [8], Chen et al.
Kakaç and Yener [10] etc. are among the investigators
analyzed the transient heat transfer in ducts numerically.

Artificial neural networks (ANNs) have become po
ular because of their high computational rates, robus
ness and ability to learn, and they have been use
diverse applications in power systems, manufacturing,
timization, medicine, signal processing, control, robot
and social/psychological sciences [15,16]. Fuzzy logic
problem-solving technique that derives its power from
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Nomenclature

D diameter of orifice plate . . . . . . . . . . . . . . . . . . . m
Dp duct diameter of fan redevelopment . . . . . . . . m
Dt diameter of test section . . . . . . . . . . . . . . . . . . . m
f logistic sigmoid activation function
h hidden layer
O output
OL output layer
p design parameter (consequent parameter)
q design parameter (consequent parameter)
r design parameter (consequent parameter)
Rep Reynolds number in the fan redevelopment

section
Ret Reynolds number in the test section
t time
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .◦C
w wiring strength of a rule
W weights
X axial distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
X input
Y target activation of the output layer

Greek symbols

α dimensionless decay index

α learning rate
β frequency of inlet periodic heat input . . . . . . Hz
δ error for output neuron
θ dimensionless amplitude,�T/�T0
θ threshold between the input and hidden layers
ε1 expansion factor
η momentum factor
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

�P orifice plate pressure drop . . . . . . . . . . . . . . . . Pa
�T centerline temperature amplitude . . . . . . . . . .◦C
�T0 temperature amplitude at the center of the

inlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .◦C
µ dynamic viscosity . . . . . . . . . . . . . . . . . . N·s·m−2

ϕ amplitude variation

Subscripts

i input
max maximum
min minimum
o output
p value related to the redevelopment section
t value related to the test section
amp amplitude
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ability to draw conclusions and generate responses base
vague, ambiguous, incomplete and imprecise informat
To simulate this process of human reasoning it applies
mathematical theory of fuzzy sets first defined by Professo
Lotfi Zadeh, in 1965 [17]. ANFIS (Adaptive Neuro-Fuzz
Inference Systems), developed in the early 90s by Jang
incorporates the concept of fuzzy logic into the neural n
works to facilitate learning and adaptation.

ANNs have been used by various investigators for m
eling and predictions in the field of energy-engineer
systems. Kalogirou [15] presents various applications
the ANNs in the field of energy-engineering systems i
thematic way: solar steam generator, solar water hea
systems, heating, ventilating and air conditioning (HVA
systems, solar radiation and wind speed predictions, po
generation systems, forecasting and prediction, refrigera
etc. The number of investigations that evaluate convec
heat transfer using artificial intelligence techniques is l
ited. Thibault and Grandjean [19] presented a neural netw
methodology for heat transfer data analysis. Three dif
ent examples were solved, using a three-layer feedforw
neural network. It was shown that neural networks could
used to adequately correlate heat transfer data. Jambunath
et al. [20] evaluated convective heat transfer coefficients
ing neural networks. The backpropogation algorithm w
used to predict heat transfer coefficients from a given
of experimentally obtained conditions. Diaz et al. [21] p
posed a methodology for training and prediction of
n

,

dynamic behavior of thermal systems with heat excha
ers. The artificial neural network technique was extende
the simulation of the time-dependent behavior of a heat
changer and used to control the temperature of air pas
over it. A neural network approach was used to a non
ear identification and control of a heat exchanger by Bit
and Piroddi [22]. Scalabrin and Piazza [23] presented
modeling of forced convection heat transfer for carbon di
ide flowing inside a heated tube at supercritical conditio
Four different correlation architectures were considered fo
the neural network function, alternatively based on dimen
sionless groups and on directly accessible physical quan
as independent variables.

Artificial intelligence (AI) techniques can provide a fu
damentally different approachto transient heat transfer i
ducts than numerical solution methods. Artificial intelli-
gence in the form of expert systems and/or neural netw
can provide an affordable means of capturing the trans
heat transfer data and knowledge in a documented f
available for all. On the other hand, review of literature
artificial intelligence systems in the area of transient h
transfer reveals that only a limited number of studies h
been reported [14]. Ekmekçi et al. [14] presents the
sults of an investigation on forced convection in a duct w
artificial neural network. A multilayered feed-forward bac
propagation neural network algorithm was used to pre
the temperature distribution in a duct with a periodica
varying inlet temperature in hydrodynamically develop
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and thermally developing unsteady laminar convection
the author’s knowledge, there is no study on the applica
of neuro-fuzzy systems to transient heat transfer in a d
The purpose of this study is to apply an adaptive neuro-fu
intelligence system to transient heat transfer. The exp
mental results of transient forced convection with therm
developing and simultaneously developing airflow within
circular duct are used. A traditional data-mining and a ne
network technique are also used for comparison purpo
and the results were compared to those of the ANFIS.

2. Neural networks

Algorithms for analytic computer codes in engineer
systems are usually complicated, involving the solut
of complex differential equations. These programs usu
require large computer power and need a consider
amount of time to give accurate predictions. Instead
complex rules and mathematicalroutines, artificial neural
networks are able to learn the key information patte
within a multi-dimensional information domain. In additio
they are fault tolerant in the sense that they are abl
handle noisy and incomplete data, are able to deal with
linear problems, and once trained can perform predict
and generalizations at high speed [15].

A neural network is a computational structure, consist
of a number of highly interconnected processing elem
(or nodes) that produces a dynamic response to extern
put or stimuli. Neural networks were originally develop
as approximations of the capabilities exhibited by biolo
cal neural systems, and they are based on a connect
structure and mathematical functions that imitate the ar
tecture and functions of the human brain. An artificial neu
network consists of interconnected artificial neurons, in
acting with one another in a concerted manner. Much of
interest in neural networks arises from their ability to le
to recognize patterns in large data sets. This is accompli
by presenting the neural network with a series of example
the conditions that the network is being trained to repres
The neural network then learnsthe governing relationship
in the data set by adjusting the weights between its node
essence, a neural network can be viewed as a function
maps input vectors to output vectors [16,24].

In this study, a multi-layered feed-forward back-prop
gation algorithm is used. Input–output pairs are prese
to the network, and weights are adjusted to minimize
error between the network output and the actual value. Fig.
shows the back-propagationmodel, which has three laye
neurons: an input layer, a hidden layer, and an output l
[25]. The back-propagation training algorithm is an iterat
gradient algorithm, designed to minimize the mean squ
error between the predicted output and the desired ou
The flow chart of the back-propagation learning algorit
is illustrated in Fig. 2. The algorithm of training a bac
propagation network is summarized as follows [14]:
,

-

t

t

f

.

Fig. 1. A three-layer feed-forward neural network used in this study

Fig. 2. Flow chart of the back-propagation learning algorithm.

(1) Initialize weights and threshold values: set all weig
and threshold to small random values.

(2) Present input and desired output: present a contin
valued input vectorX1,X2, . . . ,Xn, and specify the
desired outputsO1,O2, . . . ,On. Usually the training
sets are normalized to values between−0.9 and 0.9
during processing.

(3) Compute the output of each node in the hidden laye

hi = f

(
n∑

i=1

WijXi − θj

)
(1)

wherehj is the vector of hidden-layer neurons,i is the
input-layer neurons,Wij are the weights between th



1078 A. Hasiloglu et al. / International Journal of Thermal Sciences 43 (2004) 1075–1090

n

:

and

and

on

er

r:

to

r:

the
for

al is
ys-
zzy
an
pre-
ogic
ith
ink-
h’s

de-

].
tem
g

ical
dge,
ur
se,

t
ed
y
“If
y
ent

ay

The
s
to

een
zy
oto
ree
zzy
ro-
er
0].

rks
ault-
stem
ike
zzy

in
ade
o-
ame
h
e a
the
nd
for

the
input and hidden layers, andθj is the threshold betwee
the input and hidden layers.

(4) Compute the output of each node in the output layer

Ok = f

(
m∑

i=1

WkjXj − θk

)
(2)

wherek represent the output layer,Wkj are the weights
connecting the hidden and output layers,θk is the
threshold connecting the hidden and output layers,
f (x) is a logistic sigmoid activation function:

f (x) = 1

1+ e−x
(3)

(5) Compute the output layer error between the target
the observed output:

δk = Ok(1− Ok)(Y − Ok) (4)

whereδk is the vector of errors for each output neur
andY is the target activation of output layer.

(6) Compute the hidden layer error:

δj = hj (1− hj )

m∑
k=1

δkWkj (5)

whereδj is the vector of errors for each hidden lay
neuron.

(7) Adjust the weights and thresholds in the output laye

Wkj (t + 1) = Wkj (t) + αδkhj

+ η
(
Wkj (t) − Wkj (t − 1)

)
(6)

θk(t + 1) = θk(t) + αδk (7)

whereα is the learning rate andη is the momentum
factor used to allow the previous weight change
influence the weight change in this time period,t .

(8) Adjust the weights and thresholds in the hidden laye

Wji(t + 1) = Wji(t) + αδjhi

+ η
(
Wji(t) − Wji(t − 1)

)
(8)

θj (t + 1) = θj (t) + αδj (9)

(9) Repeat steps (2) to (8) on the all pattern pairs until
output layer error is within the specified tolerance
each pattern and for each neuron.

3. Fuzzy logic

System modeling based on conventional mathematic
not well suited for dealing with ill-defined and uncertain s
tems. By contrast, a fuzzy inference system employing fu
if–then rulescan model the qualitative aspects of hum
knowledge and reasoning processes without employing
cise quantitative analyses. Fuzzy set theory and fuzzy l
were established in 1965 by Zadeh in order to deal w
the vagueness and ambiguity associated with human th
ing, reasoning, cognition, and perception [17]. After Zade
work on fuzzy sets, many theories in fuzzy logic were
veloped, andfuzzy modeling or fuzzy identificationhas been
applied successfully to a number of applications [26–31

A fuzzy model is one that expresses a complex sys
in the form of fuzzy implications. In the fuzzy modelin
of a process, a fuzzy model is built by using the phys
properties of a system, observed data, empirical knowle
and so on. A typical fuzzy logic system consists of fo
major components: fuzzification interface, fuzzy rule ba
fuzzy inference engine and defuzzification interface. The
fuzzification interface(fuzzifier) converts numerical inpu
data into suitable linguistic terms, which may be view
as labels of the fuzzy sets. Afuzzy rule represents a fuzz
relation between two fuzzy sets. It takes form such as
X is A then Y is B”. Each fuzzy set is characterized b
appropriate membership functions that map each elem
to a membership value between 0 and 1. Afuzzy rule
basecontains a set of fuzzy rules, where each rule m
have multiple inputs and multiple outputs.Fuzzy inferencing
can be realized by using a series of fuzzy operations.
defuzzification interface(defuzzifier) combines and convert
linguistic conclusions (fuzzy membership functions) in
crisp numerical outputs.

Depending on the types of inference operations upon“if-
then rules”,three types of fuzzy inference system have b
widely employed in various applications: Mamdani fuz
models [27], Sugeno fuzzy models [28], and Tsukam
fuzzy models [29]. The differences between these th
fuzzy inference systems lie in the consequents of their fu
rules, and thus their aggregation and defuzzification p
cedures differ accordingly. Strengths, weakness, and oth
related issues for these systems can be found in Ref. [3

4. Adaptive neuro-fuzzy inference system (ANFIS)

While fuzzy logic performs an inference mechanism
under cognitive uncertainty, computational neural netwo
offer exciting advantages, such as learning, adaptation, f
tolerance, parallelism and generalization. To enable a sy
to deal with cognitive uncertainties in a manner more l
humans, neural networks have been engaged with fu
logic, creating a new terminology calledneuro-fuzzymethod
[30]. Takagi and Hayashi made pioneer augmentation
development of neuro-fuzzy technology in the last dec
[31]. Similarly, Jang developed ANFIS (Adaptive Neur
Fuzzy Inference Systems) in the early 90s [18]. As the n
suggests, ANFIS combines the fuzzy qualitative approac
with the neural networks adaptive capabilities to achiev
desired performance. ANFIS are fuzzy models put in
framework of adaptive systems to facilitate learning a
adaptation. Such system can be trained with no need
the expert knowledge usually required for the design of
standard fuzzy logic.



A. Hasiloglu et al. / International Journal of Thermal Sciences 43 (2004) 1075–1090 1079
Fig. 3. ANFIS architecture used in this study.
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Fig. 3 shows the ANFIS architecture. A first order Sugen
fuzzy model is used as a means of modeling fuzzy rules
desired outputs:

if X1 = Ai andXn = Bj thenfi = piX1+ qiXn + ri (10)

wherepi , qi andri are design parameters to be determin
during the training stage. In the presentation, a ci
indicates a fixed node whereas a square indicates an ada
node. An adaptive node means that the parameters
changed during adaptation or training. This architec
is a five-layered feed-forward neural structure, and th
functionality of the nodes in these layers is summarized
follows [32,33]:

(1) All the nodes in the first layer are adaptive. Each neu
in this layer corresponds to a linguistic label and
output equals the membership function of this linguis
label:

OL1i = µAi(X1) (11)

(2) The nodes in layer 2 are fixed (not adaptive). Each n
in this layer estimates the firing strength(wi) of a rule,
which is found from the multiplication of the incomin
signal:.

OL2i = wi = µAi(X1)µBj (Xn) (12)

(3) The nodes in layer 3 are also fixed nodes. Each nod
this layer estimates the ratio(wi) of the ith rule’s firing
strength to sum of the firing strength of all rules,j . They
perform a normalization of the firing strength from t
previous layer. The output of each node in this laye
given by:

OL3i = w̄i = wi∑i
j=1 wi

(13)

(4) All the nodes in layer 4 are adaptive nodes. The ou
of each node in this layer is the product of the previou
found relative firing strength of theith rule (referred to
as defuzzifier or consequent parameters) and the ru
first order polynomial for first order Sugeno model):

OL4i = w̄ifi = w̄i (piX1 + qiXn + ri ) (14)
e

wherepi , qi andri are design parameters (referred to
consequent parameters since they deal with the then-pa
of the fuzzy rule).

(5) Layer 5 has only one node, and it performs the func
of a simple summer. It computes the overall output
the summation of all incoming signals from layer 4:

OL5i =
j∑

i=1

w̄ifi =
∑

i wifi∑
i wi

(15)

The results are then defuzzified using a weighted-ave
procedure.

The ANFIS architecture is not unique. Some layers
be combined and still produce the same output. In
ANFIS architecture, there are two adaptive layers (lay
1 and 4). Layer 1 has modifiable parameters related
the input membership function. The parameters in
layer are called premise parameters. Layer 4 has also
modifiable parameters (pi , qi andri ) pertaining to the firs
order polynomial. These parameters are called conseq
parameters.

The task of the training or learning algorithm for th
architecture is to tune all themodifiable parameters t
make the ANFIS output match the training data. A train
method such as back-propagation or a hybrid learning
which combines the gradient method and the least squ
is employed to find the optimumvalue for the parameters o
the membership functions and a least squares procedu
the linear parameters on the fuzzy rules, in such a way a
minimize the error between the input and the output pair

5. Experimental setup and data reduction

The experimental system is designed to study the de
of sinusoidal thermal inlet conditions for transient forc
convection in thermally developing and simultaneously
veloping air flow in a circular duct, and a schematic diagr
is given in Fig. 4. The system consists mainly of a sucti
type wind tunnel originally designed and built by Brown [6
and experiments were made by Comakli [11] at Miami U
versity, Florida, USA. The main components of the syst
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Fig. 4. Experimental system.

are: air filter, calming section,inlet section, electric heate
test section, thermocouples, convergent section, orifice p
and a fan. Laboratory air is drawn into the apparatus thro
a filtered bell-mouth inlet geometry. It then passes throug
flow development section (4.57 m in length and 7.62 cm
diameter), an electric heaterof uniform V-shaped configura
tion, test section (3.05 m length and 7.62 cm in diamet
flow redevelopment section, orifice plate, main valve a
then leaves the flow circuit through the fan, operated in a
tion mode. Once the apparatus is properly assembled, th
flow is activated and adjusted for a predetermined flow
or Reynolds number. This was observed as the pressure
across the orifice plate. The function generator is switc
on, adjusted, and stabilized at a specific periodic freque
of inlet heat input.

Under-steady sustained periodic conditions, the ther
response of the fluid with-time, with respect to the in
perturbations areobtained from equally spaced beade
type chromel-constantan thermocouples, installed along
centerline and wall of the test section. To illustrate
dynamic response with-time, a multi-channel strip char
recorder is used in obtaining continuous traces of e
thermocouple output as a function of chart speed, pres
drop, probe location and inlet frequency. During this peri
the maximum and minimum outputs at individual probes
recorded at each location.

After each experimental run, raw data which cons
of millivolt readings from the thermocouples, pressu
drop across the orifice plate andtest section respectivel
in millimeters of liquid column, along with the voltag
and current supplied to the heater are recorded. F
the measured parameters, mass flow rate(ṁ), Reynolds
numbers(Rep) and (Ret ), temperature amplitudes wit
corresponding decay indices and heater power are evaluate

Under steady-sustained transient conditions, the the
response of the fluid along the centerline of the circular d
is observed to be periodic oscillations. In this study, am
tudes of the thermal oscillations are defined as one hal
,

r

p

l

difference between maximum and minimum thermocou
outputs,Tmax andTmin, respectively and expressed as

�T = Tmax− Tmin

2
(16)

As the inlet temperature varied periodically in time,
was observed that each mode of the thermal oscilla
decayed with distance along the duct. Consequently,
absolute value of the exponent in the expression gover
temperature amplitude variation with distance, under ste
sustained transient conditions is termed the decay in
(α). The decay indices are obtained as slopes of the curve
for temperature amplitude versus dimensionless dista
using least squares regression in fitting the experime
results with a 95% confidence limit and the cumulat
standard deviation from linearity. In dimensionless form,
amplitude variation along the centerline of the circular d
is defined as

ϕamp= �T

�T0
= e−α(X/Dt ) (17)

whereX/Dt is the axial dimensionless distance along
duct,�T0 the temperature amplitudemeasured at the cent
of the inlet.

In this study, standard beaded-type chromel-consta
thermocouples are used for temperature measurement
a comparison calibration method was adopted. The m
surement made with E-type thermocouples usually ha
maximum uncertainty of±0.2 ◦C within the range of 0◦C
to 100◦C. The maximum value of theuncertainty associate
with the mass flow rate and Reynolds number in turbu
flow was evaluated as±2.64%. The uncertainty associate
with decay index(α) was obtained by utilizing least squa
regression jointly with a 95% confidence interval with t
standard deviation from linearly. Based on this method,
maximum uncertainty associated with the computed deca
indices is±5%.

The experiments covered Reynolds numbers in
2528� Re� 4265 range and inlet heat input in the 0.01�
β � 0.96 Hz frequency range. Detailed knowledge on
experimental setup, instrumentation, procedure and m
surements can be found in Ref. [11].

6. Results and discussion

6.1. Experimental results

For qualitative analyses of the system’s dynamic ther
behavior, the temperature response with-time for prede
mined locations along the centerline of the circular d
is presented as a function of inlet frequency and Reyn
number, for thermally developing and simultaneously de
oping turbulent flows. During the experiments, the tempe
ture at the entrance was specified as a sinusoidal oscill
with a specified frequency. The thermal response with ti
and amplitude variation of the centerline thermal oscillati
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Table 1
Experimental temperature amplitude for circular duct in the hydrodynamically developed and thermally developing flow

X/Dt �T [◦C]

Re= 3068
β = 0.03 Hz

Re= 3069
β = 0.06 Hz

Re= 3068
β = 0.12 Hz

Re= 3068
β = 0.24 Hz

Re= 3069
β = 0.48 Hz

Re= 3061
β = 0.96 Hz

1 5.508079 4.3425 2.358107 0.634339 0.226191 0.131823
3 5.421759 4.27692 2.307767 0.632339 0.215811 0.126163
6 5.292279 4.17855 2.232257 0.629339 0.200241 0.117673
9 5.162799 4.08018 2.156747 0.626339 0.184671 0.109183

12 5.033319 3.98181 2.081237 0.623339 0.169101 0.100693
15 4.903839 3.88344 2.005727 0.620339 0.153531 0.092203
18 4.774359 3.78507 1.930217 0.617339 0.137961 0.083713
21 4.644879 3.6867 1.854707 0.614339 0.122391 0.075223
24 4.515399 3.58833 1.779197 0.611339 0.106821 0.066733
27 4.385919 3.48996 1.703687 0.608339 0.091251 0.058243
30 4.256439 3.39159 1.628177 0.605339 0.075681 0.049753
33 4.126959 3.29322 1.552667 0.602339 0.060111 0.041263
36 3.997479 3.19485 1.477157 0.599339 0.044541 0.032773
39 3.867999 3.09648 1.401647 0.596339 0.028971 0.024283

Table 2
Experimental temperature amplitude for circular duct in the hydrodynamically and thermally developing (simultaneously developing) flow

X/Dt �T [◦C]

Re= 3046
β = 0.03 Hz

Re= 3045
β = 0.06 Hz

Re= 3048
β = 0.12 Hz

Re= 3049
β = 0.24 Hz

Re= 3049
β = 0.48 Hz

Re= 3050
β = 0.96 Hz

1 5.541988 4.350546 2.364915 0.636127 0.252928 0.138746
3 5.499351 3.798271 2.234005 0.628585 0.212195 0.130597
6 5.450015 3.764223 1.992028 0.612258 0.204115 0.122416
9 5.132332 3.513217 1.720977 0.587339 0.195835 0.114213

12 5.017992 3.438298 1.688491 0.571166 0.187709 0.114244
15 4.986904 3.310014 1.65609 0.489638 0.15506 0.114188
18 3.665484 3.009877 1.534709 0.473343 0.130586 0.106097
21 3.502781 2.51461 1.315222 0.408358 0.12245 0.097994
24 3.267833 2.393165 1.274288 0.38383 0.12251 0.089866
27 3.072348 2.034618 0.997136 0.34321 0.114345 0.065333
30 2.755378 1.887952 0.923974 0.326894 0.10629 0.065386
33 2.731644 1.757864 0.916063 0.310739 0.098126 0.057223
36 2.633205 1.782418 0.89963 0.261711 0.073623 0.057223
39 2.520044 1.668782 0.818277 0.240939 0.063627 0.040916
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are expressed as function of the dimensionless distan
various values of Reynolds number and inlet frequency. A
plitudes of the thermal oscillations are defined as one
the difference between maximum and minimum thermoc
ple outputs (Eq. (16)).

Tables 1 and 2 show the experimental temperature am
tudes for the thermally developing and simultaneously
veloping flows for the range of inlet frequencies conside
respectively. The experimental results can be summarize
follows [11]:

(1) The centerline temperature amplitudes at the upstr
end were much greater than those at the downstr
end.

(2) The amplitude of the oscillations is observed to de
with small, but increasing phase lag with increas
distance from the inlet.

(3) For high inlet frequencies, the amplitude of the therm
oscillation along the centerline is observed to be ne
t

s

gible in both thermally and simultaneously develop
flows.

(4) The thermal response along the centerline chan
periodically with approximately the same frequency
that imposed at the inlet.

(5) For given Reynolds number, the temperature amplit
is observed to decrease by 82 and 88% for fully de
oped and simultaneously developing flows, respectiv
over an inlet frequency range of 0.03–0.96 Hz.

(6) At a given value of the inlet frequency, the dime
sionless temperature amplitude at a point downstr
depends on the Reynolds number and the domi
mode of heat transfer.

(7) The effects of inlet frequency on the thermal respo
of the fluid within the temperature field are observed
be more dominant in simultaneously developing flo
when compared to fully developed flows.
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The results of the experimental investigation can be fo
in detail in Ref. [11].

6.2. ANFIS results

To approach adopted in this investigation was to mo
the temperature amplitude,�T , as a function of three
variables namely,

(i) X/Dt , the dimensionless distance,
(ii) Re, Reynolds number, and
(iii) β , the heating frequency.

ANFIS was used to train and validate the neural network
to generate the fuzzy rules. Fig. 5 shows a typical three-in
network used in this application. Based on the experime
data [11], the dimensionless distance, Reynolds numbe
the heating frequency were chosen as the input, and
temperature amplitude was used as the output.

The training and test performances of the ANFIS
presented in Table 3. A three-input, first order, Sugeno fu
inference system with 16 rules was used. The numbe
rules was selected as 16 after trying various number
rules, i.e., 4, 6, 9, 16 and 20. Sixteen membership funct
were chosen for each input, and the membership func
parameters were tuned using a hybrid algorithm (mi
least squares and back-propagation). All of the member
functions of the input variables were of the Gaussian ty
and the premise parameter sub-spaces were determin
usingk-means clustering of the training data set. The aim

Fig. 5. A three-input, first order, Sugeno fuzzy inference system with 1
rules used in this study.
y

the training data set is to construct a network for achievin
desired mapping that is regulated by the data set consi
of desired input–output pairs of a target system. With a be
set of training patterns it is possible to predict the out
with high accuracy. In order to verify the generation of t
model, all of the data were divided into two categori
half of them for the training set, the other half for t
test set. The ANFIS was set for training, and the tun
algorithm modified the ANFIS parameters to match
training data. After having been verified by the test data
the temperature amplitudes were estimated using the a
neuro-fuzzy algorithm procedure.

The speed of learning is governed by the learning r
Learning rate affects the convergence speed and sta
of the weights during learning. If the learning rate
increased too much, learning becomes unstable; the
oscillates back and forth across the error minimum. Learn
rate was selected as 0.01 for thermally and simultaneo
developing flow. The training error is the difference betwe
the training data output value and the output of the fu
inference system corresponding to the same training
input value. The training error was found to be eq
to 0.0035 and 0.0088 for thermally and simultaneou
developing flow, respectively. Test errors, which assess
variance between measured and predicted values were
same order in magnitude for thermally and simultaneou
developing flow, as seen in Table 3. Epochs were sette
50 and 60 for thermally and simultaneously developing fl
respectively.

The predicted temperature amplitudes obtained with
ANFIS in addition to the experimental temperature am
tudes for different heating frequencies in the hydrodyn
ically developed and thermally developing flow are sho
in Table 4. This table includes also the error difference(�)

and error deviation (�%). In the present work, the� and
�% are evaluated as

(�T )i = T
exp
i − T

pred
i (18)

(�T %)i = T
exp
i − T

pred
i

T
exp
i

× 100 (19)

where ‘exp’ and ‘pred’ stand for experimental and calcula
values, respectively. A plot of the experimental temperatu
amplitude against dimensionless distance is given in Fig
which includes also the predicted values obtained with
ANFIS. A maximum error deviation confined to less th
put
Table 3
Training and test performances of ANFIS

Flow type Train algorithm Learning rate Training error Test error Epochs Rules for each in

Thermally developing Hybrid 0.01 0.0035014 0.03290 50 16

Simultaneously developing Hybrid 0.01 0.00875 0.02680 60 16
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aically developed and thermally developing flow

Re= 3068,β = 0.12

Exp.
Tamp[◦C]

Pre.
Tamp [◦C]

�T �T %

2.358107 2.4 0.041893 1.776552124
2.307767 2.34 0.032233 1.396718126
2.232257 2.26 0.027743 1.242822847
2.156747 2.19 0.033253 1.541812739
2.081237 2.1 0.018763 0.901531157
2.005727 2.01 0.004273 0.21303996
1.930217 1.94 0.009783 0.506834206
1.854707 1.86 0.005293 0.285382004
1.779197 1.78 0.000803 0.04513272
1.703687 1.7 0.003687 0.216412991
1.628177 1.63 0.001823 0.111965714
1.552667 1.55 0.002667 0.171768963
1.477157 1.48 0.002843 0.192464308
1.401647 1.4 0.001647 0.117504621

Re= 3061,β = 0.96

Exp.
Tamp[◦C]

Pre.
Tamp [◦C]

�T �T %

0.131823 0.132 0.000177 0.134270954
0.126163 0.126 0.000163 0.129197942
0.117673 0.118 0.000327 0.277888726
0.109183 0.109 0.000183 0.16760851
0.100693 0.101 0.000307 0.304887132
0.092203 0.0924 0.000197 0.213658992
0.083713 0.0838 8.7E–05 0.103926511
0.075223 0.0753 7.7E–05 0.102362309
0.066733 0.0666 0.000133 0.199301695
0.058243 0.0583 5.7E–05 0.097865838
0.049753 0.0497 5.3E–05 0.10652624
0.041263 0.0413 3.7E–05 0.08966871
0.032773 0.0328 2.7E–05 0.08238489
0.024283 0.0243 1.7E–05 0.070007824
Table 4
Experimental and predicted temperature amplitudes obtained with theANFIS, error differences, error deviations for circular duct in the hydrodynm

X/Dt Re= 3068,β = 0.03 Re= 3069,β = 0.06

Exp.
Tamp [◦C]

Pre.
Tamp[◦C]

�T �T % Exp.
Tamp [◦C]

Pre.
Tamp [◦C]

�T �T %

1 5.508079 5.92 0.411921 7.478487509 4.3425 4.59 0.2475 5.699481865
3 5.421759 5.83 0.408241 7.529678099 4.27692 4.5 0.22308 5.215903033
6 5.292279 5.65 0.357721 6.759299727 4.17855 4.35 0.17145 4.103097965
9 5.162799 5.42 0.257201 4.98181316 4.08018 4.2 0.11982 2.936635148

12 5.033319 5.17 0.136681 2.715524289 3.98181 4.05 0.06819 1.712537765
15 4.903839 4.95 0.046161 0.941323726 3.88344 3.91 0.02656 0.683929712
18 4.774359 4.79 0.015641 0.327604187 3.78507 3.79 0.00493 0.130248582
21 4.644879 4.65 0.005121 0.11025045 3.6867 3.69 0.0033 0.089510945
24 4.515399 4.51 0.005399 0.119568614 3.58833 3.59 0.00167 0.046539755
27 4.385919 4.38 0.005919 0.134954613 3.48996 3.49 4E–05 0.001146145
30 4.256439 4.26 0.003561 0.083661483 3.39159 3.39 0.00159 0.046880667
33 4.126959 4.13 0.003041 0.073686218 3.29322 3.29 0.00322 0.097776644
36 3.997479 3.99 0.007479 0.187092915 3.19485 3.19 0.00485 0.151806814
39 3.867999 3.87 0.002001 0.051732175 3.09648 3.1 0.00352 0.113677466

X/Dt Re= 3068,β = 0.24 Re= 3069,β = 0.48

Exp.
Tamp [◦C]

Pre.
Tamp[◦C]

�T �T % Exp.
Tamp [◦C]

Pre.
Tamp [◦C]

�T �T %

1 0.634339 0.649 0.014661 2.311224755 0.226191 0.233 0.006809 3.010287766
3 0.632339 0.635 0.002661 0.42081858 0.215811 0.221 0.005189 2.404418681
6 0.629339 0.637 0.007661 1.217308954 0.200241 0.203 0.002759 1.377839703
9 0.626339 0.635 0.008661 1.382797495 0.184671 0.186 0.001329 0.719658203

12 0.623339 0.623 0.000339 0.054384532 0.169101 0.17 0.000899 0.53163494
15 0.620339 0.619 0.001339 0.215849721 0.153531 0.154 0.000469 0.305475767
18 0.617339 0.622 0.004661 0.755014668 0.137961 0.138 3.9E–05 0.028268859
21 0.614339 0.612 0.002339 0.380734415 0.122391 0.121 0.001391 1.136521476
24 0.611339 0.607 0.004339 0.709753508 0.106821 0.106 0.000821 0.768575467
27 0.608339 0.61 0.001661 0.273038553 0.091251 0.092 0.000749 0.820812923
30 0.605339 0.605 0.000339 0.056001678 0.075681 0.0761 0.000419 0.553639619
33 0.602339 0.598 0.004339 0.720358469 0.060111 0.0591 0.001011 1.681888506
36 0.599339 0.595 0.004339 0.723964234 0.044541 0.0436 0.000941 2.112660246
39 0.596339 0.593 0.003339 0.559916423 0.028971 0.0295 0.000529 1.825963895
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Table 5
Predicted temperature amplitudes obtained with the ANFISfor different heating frequencies for circular duct in the
hydrodynamically developed and thermally developing flow

X/Dt Re= 3068
β = 0.045 Hz

Re= 3069
β = 0.090 Hz

Re= 3068
β = 0.18 Hz

Re= 3068
β = 0.36 Hz

Re= 3069
β = 0.72 Hz

1 4.71 3.21 0.925 0.99 1.04
3 4.63 3.14 0.91 0.987 1.09
6 4.51 3.04 0.891 0.978 1.16
9 4.4 2.95 0.892 0.973 1.21

12 4.29 2.87 0.871 0.968 1.23
15 4.21 2.8 0.86 0.966 1.17
18 4.14 2.75 0.852 0.963 1.01
21 4.06 2.68 0.842 0.851 0.761
24 3.95 2.6 0.856 0.713 0.557
27 3.83 2.54 0.862 0.634 0.492
30 3.71 2.49 0.817 0.644 0.532
33 3.58 2.43 0.766 0.723 0.612
36 3.45 2.34 0.705 0.825 0.689
39 3.34 2.27 0.666 0.913 0.746
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Fig. 6. Experimental and predictedtemperature amplitudes obtained wi
the ANFIS in the hydrodynamically developed and thermally develop
flow.

7.52% was obtained, while the average absolute devia
(AAD%) was 1.076. AAD% are evaluated as

AAD% = 1

NPT

NPT∑
i=1

|�T %|i (20)

where NPT is the number of points. In general, the match
of the experimental and predicted values in each c
was acceptable. Therefore the neuro-fuzzy could be
to predict the temperature amplitude distribution with
acceptable level of accuracy.

Using the same neuro-fuzzy algorithm procedure, te
perature amplitude for some different heating frequen
are predicted and presented in Table 5. Overall input–ou
surface for the hydrodynamically developed and therm
developing flow obtained with the ANFIS is given in Fig.
In addition to providing to predict the experimental tempe
ture amplitudes, the overall input–output surface proves
that

(i) the centerline temperature amplitudes at the upstr
end are much greater than those at the downstream
 ,

Fig. 7. Overall input–output surfacefor hydrodynamically developed an
thermally developing flow.

(ii) the amplitude of the oscillations decays with small, b
increasing phase lag with increasing distance from
inlet, and

(iii) for high inlet frequencies, the amplitude of the therm
oscillation along the centerline is negligible in bo
thermally and simultaneously developing flows.

The ANFIS was also employed to predict temperat
amplitudes for simultaneously developing flows for differe
inlet frequencies. Table 6 and Fig. 8 show the compar
between the ANFIS prediction and the experimental m
surements. An examination of Table 6 shows that the m
imum error deviation(�) and average absolute deviati
(�%) are confined to less than 14.37 and 3.7%, respecti
These results show that good predictions are achieved
the temperature amplitudes of the simultaneously deve
ing flows. Using the same neuro-fuzzy algorithm proced
temperature amplitudes for some different heating frequ
cies are predicted and presented in Table 7. Fig. 9 pres
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aically and thermally developing (simultaneously developing)

Re= 3048,β = 0.12

Exp.
Tamp[◦C]

Pre.
Tamp [◦C]

�T �T %

2.364915 2.41 0.045085 1.906411013
2.234005 2.26 0.025995 1.163605274
1.992028 2.05 0.057972 2.910200057
1.720977 1.87 0.149023 8.659209275
1.688491 1.72 0.031509 1.866104113
1.65609 1.61 0.04609 2.783061307
1.534709 1.5 0.034709 2.261601385
1.315222 1.38 0.064778 4.925252163
1.274288 1.19 0.084288 6.614517283
0.997136 1.03 0.032864 3.295839284
0.923974 0.93 0.006026 0.652182854
0.916063 0.88 0.036063 3.936737975
0.89963 0.86 0.03963 4.405144337
0.818277 0.84 0.021723 2.6547245

Re= 3050,β = 0.96

Exp.
Tamp[◦C]

Pre.
Tamp [◦C]

�T �T %

0.138746 0.141 0.002254 1.624551338
0.130597 0.13 0.000597 0.457131481
0.122416 0.119 0.003416 2.790484904
0.114213 0.115 0.000787 0.689063417
0.114244 0.116 0.001756 1.537061027
0.114188 0.115 0.000812 0.711107997
0.106097 0.107 0.000903 0.851107948
0.097994 0.095 0.002994 3.055289099
0.089866 0.084 0.005866 6.527496495
0.065333 0.074 0.008667 13.26588401
0.065386 0.064 0.001386 2.119719818
0.057223 0.056 0.001223 2.137252503
0.057223 0.049 0.008223 14.37009594
0.040916 0.046 0.005084 12.42545703
Table 6
Experimental and predicted temperature amplitudes obtained with theANFIS, error differences, error deviations for circular duct in the hydrodynm
flow

X/Dt Re= 3046,β = 0.03 Re= 3045,β = 0.06

Exp.
Tamp [◦C]

Pre.
Tamp[(◦C]

�T �T % Exp.
Tamp [◦C]

Pre.
Tamp [◦C]

�T �T %

1 5.541988 5.57 0.028012 0.505450391 4.350546 4.74 0.389454 8.951841907
3 5.499351 5.5 0.000649 0.011801393 3.798271 3.65 0.148271 3.903644579
6 5.450015 5.39 0.060015 1.10118963 3.764223 3.5 0.264223 7.019323775
9 5.132332 5.27 0.137668 2.682367392 3.513217 3.35 0.163217 4.645798993

12 5.017992 5.09 0.072008 1.434996309 3.438298 3.16 0.278298 8.094062818
15 4.986904 4.72 0.266904 5.352098216 3.310014 3.77 0.459986 13.89679923
18 3.665484 4.01 0.344516 9.398922489 3.009877 3.04 0.030123 1.000805016
21 3.502781 3.39 0.112781 3.21975596 2.51461 2.43 0.08461 3.36473648
24 3.267833 3.14 0.127833 3.911858409 2.393165 2.16 0.233165 9.742955459
27 3.072348 3.03 0.042348 1.378359483 2.034618 2.02 0.014618 0.718464105
30 2.755378 2.9 0.144622 5.248717236 1.887952 1.89 0.002048 0.108477334
33 2.731644 2.76 0.028356 1.038056204 1.757864 1.78 0.022136 1.259255551
36 2.633205 2.61 0.023205 0.881245478 1.782418 1.71 0.072418 4.062907803
39 2.520044 2.49 0.030044 1.192201406 1.668782 1.71 0.041218 2.469945146

X/Dt Re= 3049,β = 0.24 Re= 3049,β = 0.48

Exp.
Tamp [◦C]

Pre.
Tamp[◦C]

�T �T % Exp.
Tamp [◦C]

Pre.
Tamp [◦C]

�T �T %

1 0.636127 0.64 0.003873 0.608840687 0.252928 0.226 0.026928 10.6465081
3 0.628585 0.632 0.003415 0.543283725 0.212195 0.213 0.000805 0.379368034
6 0.612258 0.618 0.005742 0.93783993 0.204115 0.195 0.009115 4.465619871
9 0.587339 0.597 0.009661 1.644876298 0.195835 0.181 0.014835 7.575254679

12 0.571166 0.56 0.011166 1.954948299 0.187709 0.172 0.015709 8.368804905
15 0.489638 0.508 0.018362 3.750117434 0.15506 0.155 6E-05 0.038694699
18 0.473343 0.457 0.016343 3.452675966 0.130586 0.13 0.000586 0.44874642
21 0.408358 0.415 0.006642 1.62651399 0.12245 0.118 0.00445 3.634136382
24 0.38383 0.381 0.00283 0.737305578 0.12251 0.116 0.00651 5.31385193
27 0.34321 0.349 0.00579 1.687013782 0.114345 0.113 0.001345 1.176264813
30 0.326894 0.318 0.008894 2.720759635 0.10629 0.106 0.00029 0.272838461
33 0.310739 0.288 0.022739 7.317716798 0.098126 0.093 0.005126 5.223895807
36 0.261711 0.261 0.000711 0.271673716 0.073623 0.076 0.002377 3.228610624
39 0.240939 0.236 0.004939 2.049896447 0.063627 0.055 0.008627 13.55870935



1086 A. Hasiloglu et al. / International Journal of Thermal Sciences 43 (2004) 1075–1090
Table 7
Predicted temperature amplitudes obtained with the ANFISfor different heating frequencies for circular duct in the
hydrodynamically and thermally developing flow

X/Dt Re= 3046
β = 0.045 Hz

Re= 3045
β = 0.090 Hz

Re= 3048
β = 0.18 Hz

Re= 3049
β = 0.36 Hz

Re= 3049
β = 0.72 Hz

1 5.23 2.35 1.53 1.35 0.465
3 5.15 2.02 1.46 1.33 0.437
6 5.04 1.54 1.36 1.29 0.393
9 4.91 1.19 1.27 1.25 0.342

12 4.73 1.15 1.19 1.22 0.268
15 4.35 1.64 1.14 1.22 0.124
18 3.6 1.45 1.14 1.24 0.182
21 2.95 1.38 1.24 1.24 0.545
24 2.7 1.58 1.47 1.18 0.627
27 2.59 1.23 1.8 1.03 0.562
30 2.48 1.02 2.11 0.812 0.514
33 2.35 0.891 2.34 0.595 0.502
36 2.22 0.829 2.48 0.433 0.51
39 2.11 0.833 2.57 0.332 0.531
th

ing

ues

ent
ues
zy
ura

ative
ligh
n-

al
suc
e
e

of
ber
the

f the
y, the

on,

m-
[34].
ard

only
se-

f the
dure
the

ased
the

rst
ard
r it

s in
the
ved
Fig. 8. Experimental and predictedtemperature amplitudes obtained wi
the ANFIS in the hydrodynamically and thermally developing flow

overall input–output surface for simultaneously develop
flow.

6.3. Comparison of the ANFIS results with other techniq

In order to check whether the predictions of transi
heat transfer can be done with traditional non-AI techniq
or pure neural network without using hybrid neuro-fuz
approach, a multiple linear regression analysis and a ne
network analysis were used. Presenting these altern
approaches and comparing the results could shed more
on the difficulty of the problem and the power of no
traditional methods in solving it.

It is well known that the performance of an artifici
intelligence technique depends on various parameters
as the speed of learning, the speed of convergence, th
complexity of tuning/learning algorithm, the accuracy, th
configuration of networks etc. For instance, the speed
learning can be improved by using appropriate num
of hidden nodes, the global learning coefficient, and
l

t

h

Fig. 9. Overall input–output surfacefor hydrodynamically and thermally
developing flow.

momentum factor. In the present work, the comparison o
three approaches was made on the basis of the accurac
complexity of tuning/learning algorithm, standard deviati
train and test performance.

Multiple linear regression analysis is usually used to su
marize data as well as study relations between variables
Stepwise regression is basically a combination of backw
and forward procedures and is probably the most comm
used method [35,36]. In this method, the first variable is
lected in the same manner as in the forward selection. I
variables fail to meet the entry requirements, the proce
terminates with no independent variables entering into
equation. If it passes the criterion, the second variable b
on the highest partial correlation is selected. If it passes
entry criterion, it also enters the equation. After the fi
variable is entered, stepwise selection differs from forw
selection: the first variable is examined to see whethe
should be removed according to the removal criterion a
backward elimination. In the next step, variables not in
equation are examined for removal. Variables are remo
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dynamically developed and thermally developing flow

e= 3068,β = 0.12 Hz

xp.

amp [◦C]
Pred.Tamp [◦C]

ANFIS Neural
network

Multi
regression

2.358107 2.4 2.385521 3.71396
2.307767 2.34 2.346013 2.78492
2.232257 2.26 2.285878 4.37074
2.156747 2.19 2.224623 3.67396
2.081237 2.1 2.162156 2.74492
2.005727 2.01 2.098374 4.31074
1.930217 1.94 2.033165 3.61396
1.854707 1.86 1.966405 2.68492
1.779197 1.78 1.897960 4.25074
1.703687 1.7 1.827684 3.55396
1.628177 1.63 1.755422 2.62492
1.552667 1.55 1.681008 4.19074
1.477157 1.48 1.604266 3.49396
1.401647 1.4 1.525011 2.56492

e= 3061,β = 0.96 Hz

xp.

amp [◦C]
Pred.Tamp [◦C]

ANFIS Neural
network

Multi
regression

0.131823 0.132 0.102602 0.65468
0.126163 0.126 0.108588 0.61468
0.117673 0.118 0.114746 0.55468
0.109183 0.109 0.117429 0.49468
0.100693 0.101 0.116531 0.55468
0.092203 0.0924 0.111932 0.49468
0.083713 0.0838 0.103504 0.43468
0.075223 0.0753 0.091107 0.37468
0.066733 0.0666 0.074595 0.31468
0.058243 0.0583 0.053809 0.25468
0.049753 0.0497 0.028588 0.19468
0.041263 0.0413 −0.001238 0.13468
0.032773 0.0328 −0.035841 0.07468
0.024283 0.0243 −0.075395 0.01468
Table 8
Comparison of the predicted temperatures obtained with the ANFIS, neural network and multiregression methods for circular duct in the hydro

X/Dt Re= 3068,β = 0.03 Hz Re= 3069,β = 0.06 Hz R

Exp.
Tamp [◦C]

Pred.Tamp [◦C] Exp.
Tamp [◦C]

Pred.Tamp [◦C] E
TANFIS Neural

network
Multi
regression

ANFIS Neural
network

Multi
regression

1 5.508079 5.92 5.455768 4.41074 4.3425 4.59 4.379260 3.68648
3 5.421759 5.83 5.373071 4.37074 4.27692 4.5 4.311129 3.64648
6 5.292279 5.65 5.248456 4.31074 4.17855 4.35 4.208591 3.58648
9 5.162799 5.42 5.123118 4.25074 4.08018 4.2 4.105595 0.33484

12 5.033319 5.17 4.996999 4.19074 3.98181 4.05 4.002076 3.46648
15 4.903839 4.95 4.870031 4.13074 3.88344 3.91 3.897956 0.21484
18 4.774359 4.79 4.742133 4.07074 3.78507 3.79 3.793146 3.40648
21 4.644879 4.65 4.613208 4.01074 3.6867 3.69 3.687545 0.15484
24 4.515399 4.51 4.483149 3.95074 3.58833 3.59 3.581038 3.34648
27 4.385919 4.38 4.351835 3.89074 3.48996 3.49 3.473500 0.09484
30 4.256439 4.26 4.219131 3.83074 3.39159 3.39 3.364794 3.28648
33 4.126959 4.13 4.084892 3.77074 3.29322 3.29 3.254769 0.03484
36 3.997479 3.99 3.948961 3.71074 3.19485 3.19 3.143265 3.22648
39 3.867999 3.87 3.811172 3.65074 3.09648 3.1 3.030111 −0.02516

X/Dt Re= 3068,β = 0.24 Hz Re= 3069,β = 0.48 Hz R

Exp.
Tamp [◦C]

Pred.Tamp [◦C] Exp.
Tamp [◦C]

Pred.Tamp [◦C] E
TANFIS Neural

network
Multi
regression

ANFIS Neural
network

Multi
regression

1 0.634339 0.649 0.623374 2.78492 0.226191 0.233 0.177264 0.43484
3 0.632339 0.635 0.617108 4.37074 0.215811 0.221 0.185369 3.64648
6 0.629339 0.637 0.606065 3.67396 0.200241 0.203 0.195772 0.39484
9 0.626339 0.635 0.592986 2.74492 0.184671 0.186 0.204039 3.58648

12 0.623339 0.623 0.577797 4.31074 0.169101 0.17 0.210125 0.33484
15 0.620339 0.619 0.560411 3.61396 0.153531 0.154 0.213979 3.52648
18 0.617339 0.622 0.540732 2.68492 0.137961 0.138 0.215538 0.27484
21 0.614339 0.612 0.518654 4.25074 0.122391 0.121 0.214731 3.46648
24 0.611339 0.607 0.494062 3.55396 0.106821 0.106 0.211475 0.21484
27 0.608339 0.61 0.466827 2.62492 0.091251 0.092 0.205680 3.40648
30 0.605339 0.605 0.436813 4.19074 0.075681 0.0761 0.197243 0.15484
33 0.602339 0.598 0.403873 3.49396 0.060111 0.0591 0.186051 3.34648
36 0.599339 0.595 0.367851 2.56492 0.044541 0.0436 0.171982 0.09484
39 0.596339 0.593 0.328581 4.13074 0.028971 0.0295 0.154903 3.28648
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dynamically and thermally developing(simultaneously developing)

e= 3048,β = 0.12 Hz

xp.

amp [◦C]
Pred.Tamp [◦C]

ANFIS Neural
network

Multi
regression

2.364915 2.41 2.199947 1.18976
2.234005 2.26 2.099898 1.10976
1.992028 2.05 1.956977 0.98976
1.720977 1.87 1.822325 0.86976
1.688491 1.72 1.695589 0.74976
1.65609 1.61 1.576417 0.62976
1.534709 1.5 1.464457 0.50976
1.315222 1.38 1.359365 0.38976
1.274288 1.19 1.260801 0.26976
0.997136 1.03 1.168435 0.14976
0.923974 0.93 1.081942 0.02976
0.916063 0.88 1.001010 −0.09024
0.89963 0.86 0.925336 −0.21024
0.818277 0.84 0.854627 −0.33024

e= 3050,β = 0.96 Hz

xp.

amp [◦C]
Pred.Tamp [◦C]

ANFIS Neural
network

Multi
regression

0.138746 0.141 0.215105 −0.41992
0.130597 0.13 0.215757 −0.49992
0.122416 0.119 0.216716 −0.61992
0.114213 0.115 0.217654 −0.73992
0.114244 0.116 0.218571 −0.85992
0.114188 0.115 0.219469 −0.97992
0.106097 0.107 0.220346 −1.09992
0.097994 0.095 0.221204 −1.21992
0.089866 0.084 0.222043 −1.33992
0.065333 0.074 0.222864 −1.45992
0.065386 0.064 0.223666 −1.57992
0.057223 0.056 0.224450 −1.69992
0.057223 0.049 0.225217 −1.81992
0.040916 0.046 0.225966 −1.93992
Table 9
Comparison of the predicted temperatures obtained with the ANFIS, neural network and multiregression methods for circular duct in the hydro
flow

X/Dt Re= 3046,β = 0.03 Hz Re= 3045,β = 0.06 Hz R

Exp.
Tamp [◦C]

Pred.Tamp [◦C] Exp.
Tamp [◦C]

Pred.Tamp [◦C] E
TANFIS Neural

network
Multi
regression

ANFIS Neural
network

Multi
regression

1 5.541988 5.57 5.568909 3.36188 4.350546 4.74 4.455783 2.64794
3 5.499351 5.5 5.354130 3.28188 3.798271 3.65 4.257783 2.56794
6 5.450015 5.39 5.040906 3.16188 3.764223 3.5 3.970104 2.44794
9 5.132332 5.27 4.738645 3.04188 3.513217 3.35 3.693707 2.32794

12 5.017992 5.09 4.447542 2.92188 3.438298 3.16 3.428646 2.20794
15 4.986904 4.72 4.167722 2.80188 3.310014 3.77 3.174912 2.08794
18 3.665484 4.01 3.899244 2.68188 3.009877 3.04 2.932443 1.96794
21 3.502781 3.39 3.642108 2.56188 2.51461 2.43 2.701125 1.84794
24 3.267833 3.14 3.396258 2.44188 2.393165 2.16 2.480800 1.72794
27 3.072348 3.03 3.161586 2.32188 2.034618 2.02 2.271270 1.60794
30 2.755378 2.9 2.937939 2.20188 1.887952 1.89 2.072303 1.48794
33 2.731644 2.76 2.725126 2.08188 1.757864 1.78 1.883635 1.36794
36 2.633205 2.61 2.522917 1.96188 1.782418 1.71 1.704980 1.24794
39 2.520044 2.49 2.331053 1.84188 1.668782 1.71 1.536030 1.12794

X/Dt Re= 3049,β = 0.24 Hz Re= 3049,β = 0.48 Hz R

Exp.
Tamp [◦C]

Pred.Tamp [◦C] Exp.
Tamp [◦C]

Pred.Tamp [◦C] E
TANFIS Neural

network
Multi
regression

ANFIS Neural
network

Multi
regression

1 0.636127 0.64 0.652114 0.44552 0.252928 0.226 0.096890 0.39704
3 0.628585 0.632 0.622639 0.36552 0.212195 0.213 0.095828 0.31704
6 0.612258 0.618 0.581013 0.24552 0.204115 0.195 0.094456 0.19704
9 0.587339 0.597 0.542320 0.12552 0.195835 0.181 0.093328 0.07704

12 0.571166 0.56 0.506374 0.00552 0.187709 0.172 0.092424 −0.04296
15 0.489638 0.508 0.472999 −0.11448 0.15506 0.155 0.091726 −0.16296
18 0.473343 0.457 0.442030 −0.23448 0.130586 0.13 0.091215 −0.28296
21 0.408358 0.415 0.413313 −0.35448 0.12245 0.118 0.090877 −0.40296
24 0.38383 0.381 0.386698 −0.47448 0.12251 0.116 0.090697 −0.52296
27 0.34321 0.349 0.362049 −0.59448 0.114345 0.113 0.090659 −0.64296
30 0.326894 0.318 0.339234 −0.71448 0.10629 0.106 0.090752 −0.76296
33 0.310739 0.288 0.318133 −0.83448 0.098126 0.093 0.090963 −0.88296
36 0.261711 0.261 0.298628 −0.95448 0.073623 0.076 0.091282 −1.00296
39 0.240939 0.236 0.280614 −1.07448 0.063627 0.055 0.091698 −1.12296
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Table 10
Comparison of the models

ANFIS Neural network Multiple regression

Learning algorithm Hybrid Back-propagation Stepwise regression

Standard deviation Thermally developing 0.9917003 1.007945 1.756972
Simultaneously developing 1.009565 1.010707 1.727440

Training error Thermally developing 0.0035014 0.134140 –
Simultaneously developing 0.00875 0.209694 –

Test error Thermally developing 0.03290 0.422487 –
Simultaneously developing 0.02680 0.238661 –
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until none of the remaining variables meet the removal
terion. Variable selection terminates when no more varia
meet entry and removal criteria [37]. The results obtai
with the multiple linear regression analysis are presente
Tables 8 and 9 for the thermally developing and simu
neously developing flows, respectively. Standard deviat
of the thermally developing and simultaneously develop
flow were calculated as 1.756972 and 1.727440, res
tively. Standard deviations are obtained using the follow
equation:

S =
√(∑

(Experimental− Estimated)2

n − 1

)
(21)

A multi-layered feed-forward back-propagation alg
rithm was used in the neural network analysis of the pre
study. The back-propagation model has three layers of
rons: an input layer, a hidden layer, and an output la
as shown in Fig. 1. The flow chart of the back-propaga
learning algorithm is illustrated in Fig. 2. The algorithm
the training a back-propagation network is explained in
tail in the section of introduction. The results obtained w
the multi-layered feed-forward back-propagation algorit
are presented in Tables 8 and 9 for the thermally develo
and simultaneously developing flows, respectively. Stand
deviations were determined to be equal to 1.007945
1.010707 for the thermally developing and simultaneou
developing flows, respectively.

The comparison of the ANFIS, multiple linear regressi
and neural network is presented in Table 10. The compar
shows that:

(i) The maximum standard deviations were obtained w
the multiple linear regression,

(ii) the standard deviation of the neural network is hig
than that of the ANFIS,

(iii) the training and test errors of the neural network
higher than those of the ANFIS.

Shortly it may be stated that the ANFIS yields the m
accurate results.
7. Conclusions

This study was conducted to demonstrate the useful
of the artificial intelligence techniques for the predicti
of transient heat transfer. An adaptive neuro-fuzzy infer
ence system was applied for the transient heat transf
thermally and simultaneously developing circular duct flo
subjected to a sinusoidally varying inlet temperature. T
accuracy of predictions and the adaptability of the A
FIS have been examined. The ANFIS indicated that it
able to learn the training data set and accurately pre
the output of unseen test data. The results obtained
the ANFIS are also compared to those of a multiple
ear regression and a neural network with a multi-laye
feed-forward back-propagation algorithm. The compari
showed that the ANFIS performed better than the mu
ple linear regressions and the neural network. Although
present study has produced promising preliminary result
provide an affordable means of capturing transient con
tive heat transfer data and knowledge in a documented
available for all, this study should be progressed.
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